skip to main content


Search for: All records

Award ID contains: 2029840

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    This study reports different properties of ionospheric perturbations detected to the west and south of the Korean Peninsula after the Hunga‐Tonga volcanic eruption on 15 January 2022. Transient wave‐like total electron content (TEC) modulations and intense irregular TEC perturbations are detected in the west and south of the Korean Peninsula, respectively, about 8 hr after the eruption. The TEC modulations in the west propagate away from the epicenter with a speed of 302 m/s. Their occurrence time, propagation direction and velocity, and alignment with the surface air pressure perturbations indicate the generation of the TEC modulations by Lamb waves generated by the eruption. The strong TEC perturbations and L band scintillations in the south are interpreted in terms of the poleward extension of equatorial plasma bubbles (EPBs). We demonstrate the association of the EPBs with the volcanic eruption using the EPB occurrence climatology derived from Swarm satellite data.

     
    more » « less
  2. Abstract

    This study provides first storm time observations of the westward‐propagating medium‐scale traveling ionospheric disturbances (MSTIDs), particularly, associated with characteristic subauroral storm time features, storm‐enhanced density (SED), subauroral polarization stream (SAPS), and enhanced thermospheric westward winds over the continental US. In the four recent (2017–2019) geomagnetic storm cases examined in this study (i.e., 2018‐08‐25/26, 2017‐09‐07/08, 2017‐05‐27/28, and 2016‐02‐02/03 with minimum SYM‐H index −206, −146, −142, and −58 nT, respectively), MSTIDs were observed from dusk‐to‐midnight local times predominately during the intervals of interplanetary magnetic field (IMF) Bz stably southward. Multiple wavefronts of the TIDs were elongated NW‐SE, 2°–3° longitude apart, and southwestward propagated at a range of zonal phase speeds between 100 and 300 m/s. These TIDs initiated in the northeastern US and intensified or developed in the central US with either the coincident SED structure (especially the SED basis region) or concurrent small electron density patches adjacent to the SED. Observations also indicate coincident intense storm time electric fields associated with the magnetosphere–ionosphere–thermosphere coupling electrodynamics at subauroral latitudes (such as SAPS) as well as enhanced thermospheric westward winds. We speculate that these electric fields trigger plasma instability (with large growth rates) and MSTIDs. These electrified MSTIDs propagated westward along with the background westward ion flow which resulted from the disturbance westward wind dynamo and/or SAPS.

     
    more » « less
  3. Abstract

    Large amplitude plasma density irregularities have occasionally been detected at night in the midlatitudeFregion during geomagnetic storms. They are often interpreted in terms of equatorial plasma bubbles (EPBs) because midlatitude irregularities have the morphology of EPBs. This study assesses whether morphology can be a determining factor in ascribing the origin of such midlatitude ionospheric irregularities. We address this question by analyzing the observations of the First Republic of China satellite (ROCSAT‐1) and Defense Meteorological Satellite Program (DMSP)‐F14 and ‐F15 satellites during the geomagnetic storms on 12 February 2000 and 29 October 2003. On both days, ROCSAT‐1 detects plasma depletions at midlatitudes in broad longitude regions and DMSP satellites detect isolated severe plasma depletions whose widths and depths are much wider and deeper than those of typical EPBs. The distinguishing characteristics during the storms are the detection of midlatitude depletions only in the Southern Hemisphere and the occurrence of some of these depletions before 19 hr local time and at the longitudes where EPBs are absent in the equatorial region. These characteristics are not explained satisfactorily by the characteristics of EPBs. Considering the detection of some of the midlatitude depletions at the equatorward edge of ionospheric perturbations in midlatitudes, midlatitude depletions are likely ionospheric perturbations that originated from higher latitudes. Because midlatitude depletions can originate from different sources, the morphology alone is not a determining factor of their origin.

     
    more » « less
  4. Abstract

    We investigate the correlation of sporadic E (Es) with the occurrence of medium‐scale traveling ionospheric disturbances (MSTIDs) at night in middle latitudes (25°–40°N and 25°–40°S magnetic latitudes) by examining their occurrence climatology. The occurrence climatology of Es and MSTIDs is derived using the Challenging Minisatellite Payload satellite data acquired in 2001–2008 and 2001–2009, respectively. Electron density irregularities and radio scintillations are used as the detection proxies of MSTIDs and Es, respectively. The occurrence rate of MSTIDs shows a semi‐annual variation with the primary peak during June solstices and the secondary peak during December solstices in both hemispheres. However, the occurrence rate of Es shows a seasonal variation with a pronounced peak in summer in both hemispheres. The occurrence of MSTIDs during local summer and equinoxes is correlated with the occurrence of local Es, but the high occurrence rate of MSTIDs in local winter is not correlated with local winter hemisphere Es. MSTIDs in the winter hemisphere are correlated with magnetically conjugate MSTIDs in the summer hemisphere; these summer hemisphere MSTIDs are correlated with the occurrence of Es in the summer hemisphere. The occurrence rate of MSTIDs clearly shows an increase with decreasing solar activity, but the solar cycle dependence of Es is not obvious from the data. This observation suggests that the generation of MSTIDs is significantly affected by factors other than Es such as the growth rate of the Perkins instability, atmospheric gravity waves, and theFregion conductance.

     
    more » « less
  5. Abstract

    Electron density irregularities on the dayside in the low‐latitudeFregion are understood as remnants (or fossils) of nighttime plasma bubbles. We provide observational evidence of the connection of daytime irregularities to nighttime bubbles and the transport of the daytime irregularities by the vertical motion of the background ionosphere. The distributions of irregularities are derived using the measurements of the ion density by the first Republic of China satellite from March 1999 to June 2004. The seasonal and longitudinal distributions of daytime and nighttime irregularities in low latitudes show a close similarity. The high occurrence rate of daytime irregularities at the longitudes where strong irregularities occur frequently at night provides strong evidence of the association of daytime irregularities with nighttime bubbles. Nighttime irregularities are concentrated in the equatorial region, whereas daytime irregularities spread over broader latitudes. The seasonal and longitudinal variation of the latitudinal spread of daytime irregularities is consistent with the morphologies of plasma density and vertical plasma velocity. The zonal wave number 4 pattern, which corresponds to that in plasma density, is identified in the distribution of daytime irregularities. These observations lead to the conclusion that the morphology of daytime irregularities in the low‐latitudeFregion is dominated by the morphology of bubbles at night and the ionospheric fountain process on the dayside.

     
    more » « less
  6. ami2py is a Python module that runs the SAMI2 (Sami2 is Another Model of the Ionosphere) ionospheric model, as well as load and archive the results. SAMI2 is a model developed by the Naval Research Laboratory to simulate the motions of plasma in a two-dimensional ionospheric environment along a dipole magnetic field. SAMI2 solves for the chemical and dynamical evolution of seven ion species in this environment (H+ , He+ , N+ , O+ , N+ 2 , NO , and O2 ). The Python implementation allows for additional modifications to the empirical models within SAMI2, including the exospheric temperature in the empirical thermosphere and the input of E×B ion drifts. The code is open source and available to the community on GitHub. The work here discusses the implementation and use of sami2py, including integration with the pysat ecosystem and the growin python package for ionospheric calculations. As part of the Application Usability Level (AUL) framework, we will discuss the usability of this code in terms of several ionospheric applications. 
    more » « less
  7. Jee, Geonhwa (Ed.)
    Electron density irregularities in the equatorial ionosphere at night are understood in terms of plasma bubbles, which are produced by the transport of low-density plasma from the bottomside of the F region to the topside. Equatorial plasma bubbles (EPBs) have been detected by various techniques on the ground and from space. One of the distinguishing characteristics of EPBs identified from long-term observations is the systematic seasonal and longitudinal variation of the EPB activity. Several hypotheses have been developed to explain the systematic EPB behavior, and now we have good knowledge about the key factors that determine the behavior. However, gaps in our understanding of the EPB climatology still remain primarily because we do not yet have the capability to observe seed perturbations and their growth simultaneously and globally. This paper reviews the occurrence climatology of EPBs identified from observations and the current understanding of its driving mechanisms. 
    more » « less