Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
As next-generation communication services and satellite systems expand across diverse frequency bands, the escalating utilization poses heightened interference risks to passive sensors crucial for environmental and atmospheric sensing. Consequently, there is a pressing need for efficient methodologies to detect, characterize, and mitigate the harmful impact of unwanted anthropogenic signals known as radio frequency interference (RFI) at microwave radiometers. One effective strategy to reduce such interference is to facilitate the coexistence of active and passive sensing systems. Such approach would greatly benefit from a testbed along with a dataset encompassing a diverse array of scenarios under controlled environment. This study presents a physical environmentally controlled testbed including a passive fully calibrated L-band radiometer with a digital back-end capable of collecting raw in-phase/quadrature (IQ) samples and an active fifth-generation (5G) wireless communication system with the capability of transmitting waveforms with advanced modulations. Various RFI scenarios such as in-band, transition-band, and out-of-band transmission effects are quantified in terms of calibrated brightness temperature. Raw radiometer and 5G communication samples along with preprocessed time-frequency representations and true brightness temperature data are organized and made publicly available. A detailed procedure and publicly accessible dataset are provided to help test the impact of wireless communication on passive sensing, enabling the scientific community to facilitate coexistence research and quantify interference effects on radiometers.more » « lessFree, publicly-accessible full text available September 2, 2025
-
As we progress from 5G to emerging 6G wireless, the spectrum of cellular communication services is set to broaden significantly, encompassing real-time remote healthcare applications and sophisticated smart infrastructure solutions, among others. This expansion brings to the forefront a diverse set of service requirements, underscoring the challenges and complexities inherent in next-generation networks. In the realm of 5G, Enhanced Mobile Broadband (eMBB) and Ultra-Reliable Low-Latency Communications (URLLC) have been pivotal service categories. As we venture into the 6G era, these foundational use cases will evolve and embody additional performance criteria, further diversifying the network service portfolio. This evolution amplifies the necessity for dynamic and efficient resource allocation strategies capable of balancing the diverse service demands. In response to this need, we introduce the Intelligent Dynamic Resource Allocation and Puncturing (IDRAP) framework. Leveraging Deep Reinforcement Learning (DRL), IDRAP is designed to balance between the bandwidth-intensive requirements of eMBB services and the latency and reliability needs of URLLC users. The performance of IDRAP is evaluated and compared against other resource management solutions, including Intelligent Dynamic Resource Slicing (IDRS), Policy Gradient Actor-Critic Learning (PGACL), System-Wide Tradeoff Scheduling (SWTS), Sum-Log, and Sum-Rate.The results show an improved Service Satisfaction Level (SSL) for eMBB users while maintaining the essential SSL threshold for URLLC services.more » « lessFree, publicly-accessible full text available July 2, 2025
-
In response to the evolving landscape of wireless communication networks and the escalating demand for unprecedented wireless connectivity performance in the forthcoming 6G era, this paper proposes a new 6G architecture to enhance the wireless network's sum rate performance. Therefore, we introduce an aerial base station (ABS) network with reconfigurable intelligent surfaces (RISs) while leveraging the multi-users multiple-input single-output (MU-MISO) antenna technology. The motivation behind our proposal stems from the imperative to address critical challenges in contemporary wireless networks and harness emerging technologies for substantial performance gains. We employ deep reinforcement learning (DRL) to jointly optimize the ABS trajectories, the active beamforming weights, and the RIS phase shifts. Simulation results show that this joint optimization effectively improves the system's sum rate while meeting minimum quality of service (QoS) requirements for diverse mobile users.more » « lessFree, publicly-accessible full text available June 9, 2025
-
Passive microwave remote sensing is a vital tool for acquiring valuable information regarding the Earth's surface, with significant applications in agriculture, water management, forestry, and various environmental disciplines. Precision agricultural (PA) practices necessitate the availability of field-scale, high-resolution remote sensing data products. This study focuses on the design and development of a cost-effective, portable L-band microwave radiometer capable of operating from an unmanned aircraft system platform to measure high-resolution surface brightness temperature (TB). This radiometer consists of a dual-polarized (Horizontal polarized, H-pol and Vertical polarized, V-pol) antenna and a software-defined radio-based receiver system with a 30 MHz sampling rate. The post-processing methodology encompasses the conversion of raw in-phase and quadratic (I&Q) surface emissions to radiation TB through internal and external calibrations. Radiometric measurements were conducted over an experimental site covering both bare soil within an agricultural field and a large water body. The results yielded a high-resolution TB map that effectively delineated the boundaries between land and water, and identified land surface features. The radiometric temperature measurements of the sky and blackbody demonstrated a standard deviation of 0.95 K for H-pol and 0.57 K for V-pol in the case of the sky and 0.39 K for both H-pol and V-pol in the case of the blackbody observations. The utilization of I&Q samples acquired via the radiometer digital back-end facilitates the generation of different time–frequency (TF) analyses through short-time Fourier transform and power spectral density (PSD). The transformation of radiometer samples into TF representations aids in the identification and mitigation of radio frequency interference originating from the instrument itself and external sources.more » « less
-
In our ever-expanding world of advanced satellite and communications systems, there's a growing challenge for passive radiometer sensors used in the Earth observation like 5G. These passive sensors are challenged by risks from radio frequency interference (RFI) caused by anthropogenic signals. To address this, we urgently need effective methods to quantify the impacts of 5G on Earth observing radiometers. Unfortunately, the lack of substantial datasets in the radio frequency (RF) domain, especially for active/passive coexistence, hinders progress. Our study introduces a controlled testbed featuring a calibrated L-band radiometer and a 5G wireless communication system. In a controlled chamber, this unique setup allows us to observe and quantify transmission effects across different frequency bands. By creating a comprehensive dataset, we aim to standardize and benchmark both wireless communication and passive sensing. With the ability to analyze raw measurements, our testbed facilitates RFI detection and mitigation, fostering the coexistence of wireless communication and passive sensing technologies while establishing crucial standards.more » « less
-
Passive remote sensing through microwave radiometry has been utilized in Earth observation by estimating several geophysical parameters. Because of the low noise floor associated with the instrument (i.e., radiometer), the received geophysical emission is sampled in a protected band dedicated to remote sensing. This protected L-band occupying 1400-1427 MHz is also exciting and ideal for science because of lower attenuation from the atmosphere. This reason has also made this microwave region ideal for next-generation (xG) wireless communication. 5G cellular systems support two frequency ranges FR1 (0.45 GHz–6 GHz) and FR2 (24.45 GHz-52.6 GHz). Although operating bands are prohibited from conducting any up-link or down-link operations in the protected portion of the L-band, out-of-band (OOB) emissions can still have a significant impact on passive sensors because of the high sensitivity requirements related to science. This study will demonstrate a unique physical testbed that has the capability to observe in-band and OOB emissions in a protected anechoic chamber. Flexibility on transmitted waveforms and the potential to analyze raw measurements (IQ samples) of radiometers will help in designing onboard radio frequency interference (RFI) processing along with the coexistence of communication and passive sensing technologies.more » « less
-
Passive microwave remote sensing plays an essential role in providing valuable information about the Earth’s surface, particularly for agriculture, water management, forestry, and other environmental fields. One of the key requirements for precision agricultural applications is the availability of field- scale high-resolution remote sensing data products. With the recent development of reliable unmanned aircraft systems (UAS), airborne deployment of remote sensing sensors has become more widespread to provide such products. With this in mind, we developed a UAS-based dual H-pol (hori- zontal) and V-pol (vertical) polarized radiometer operating in L-band (1400-1427 MHz). The custom dual-polarized an- tenna acquires surface emission response through a software- defined radio (SDR). This SDR-based system provides full control over the data acquisition parameters such as band- width, sampling frequency, and data size. Radio frequency interference (RFI) poses a significant challenge in radiometric measurements, requiring post-processing of the full-band radiometer data to identify and eliminate RFI-contaminated measurements, thus ensuring accurate Earth emission read- ings.. In this paper, we implemented near-real-time RFI detection onboard during the flight to accelerate the post- processing. The altitude and the speed of the UAS can be varied to achieve desired ground resolution for the measure- ment. This paper presents the full custom design and develop- ment of a lightweight SDR-based UAS-borne radiometer for precision agriculture. Additionally, we introduce the concept of an agile radiometer implemented from a small UAS that can serve as a testbed for both current and future spaceborne missions.more » « less