Receiver nonlinearity gives rise to intermodulation products that are caused by two strong adjacent channel signals called blockers. The nonlinear distortion effects are significantly higher for multiple antenna wideband systems in dispersive environments because third order intermodulation products decreases the signal-to-noise ratio (SNR) at the output of the equalization process. This complicates the demodulation process and increases the bit error rate. This paper considers such nonlinear distortion in the context of space-time shift keying (STSK)-enabled wideband single-carrier systems and proposes an iterative space-time block equalization (ISTBE) framework for frequency domain equalization. We present our design of a practical ISTBE receiver based on the turbo principle and numerically demonstrate that it effectively removes the residual inter-symbol interference while suppressing high-power blockers and the in-band intermodulation distortion that they cause. The proposed system is thus suitable for simple wideband radio frequency front ends operating in the weak nonlinear region and enables adjacent channel spectrum coexistence with heterogeneous transmitters and receivers of different qualities.
more »
« less
AI-Driven Demodulators for Nonlinear Receivers in Shared Spectrum with High-Power Blockers
Research has shown that communications systems and receivers suffer from high power adjacent channel signals, called blockers, that drive the radio frequency (RF) front end into nonlinear operation. Since simple systems, such as the Internet of Things (IoT), will coexist with sophisticated communications transceivers, radars and other spectrum consumers, these need to be protected employing a simple, yet adaptive solution to RF nonlinearity. This paper therefore proposes a flexible data driven approach that uses a simple artificial neural network (ANN) to aid in the removal of the third order intermodulation distortion (IMD) as part of the demodulation process. We introduce and numerically evaluate two artificial intelligence (AI)-enhanced receivers—ANN as the IMD canceler and ANN as the demodulator. Our results show that a simple ANN structure can significantly improve the bit error rate (BER) performance of nonlinear receivers with strong blockers and that the ANN architecture and configuration depends mainly on the RF front end characteristics, such as the third order intercept point (IP3). We therefore recommend that receivers have hardware tags and ways to monitor those over time so that the AI and software radio processing stack can be effectively customized and automatically updated to deal with changing operating conditions.
more »
« less
- PAR ID:
- 10331756
- Date Published:
- Journal Name:
- 2022 IEEE Wireless Communications and Networking Conference (WCNC)
- Page Range / eLocation ID:
- 644 to 649
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Millimeter-wave (mmWave) communications and cell densification are the key techniques for the future evolution of cellular systems beyond 5G. Although the current mmWave radio designs are focused on hybrid digital and analog receiver array architectures, the fully digital architecture is an appealing option due to its flexibility and support for multi-user multiple-input multiple-output (MIMO). In order to achieve reasonable power consumption and hardware cost, the specifications of analog circuits are expected to be compromised, including the resolution of analog-to-digital converter (ADC) and the linearity of radio-frequency (RF) front end. Although the state-of-the-art studies focus on the ADC, the nonlinearity can also lead to severe system performance degradation when strong input signals introduce inter-modulation distortion (IMD). The impact of RF nonlinearity becomes more severe with densely deployed mmWave cells since signal sources closer to the receiver array are more likely to occur. In this work, we design and analyze the digital IMD compensation algorithm, and study the relaxation of the required linearity in the RF-chain. We propose novel algorithms that jointly process digitized samples to recover amplifier saturation, and relies on beam space operation which reduces the computational complexity as compared to per-antenna IMD compensation.more » « less
-
null (Ed.)With the advances in wireless communications towards beyond 5G (B5G) and 6G networks, new signal processing and resource management methods need to be explored to overcome the channel impairments and other radio and computing obstacles. In contrast to the conventional methods which are based on classic digital communications structures, B5G and 6G will leverage artificial intelligence (AI) to configure or adapt the radios and networks to the operational context. This requires the ability to reformulate legacy transceiver structures and drive research, development and standardization that can leverage the amount of data that is available and that can be processed with the available computing technology. This paper describes this vision and discusses successful research that justifies it as well as the remaining challenges. We numerically analyze some of the tradeoffs when replacing the physical layer receiver processing with an artificial neural network (ANN).more » « less
-
The main resource for providing wireless services is radio frequency (RF) spectrum. In order to explore new uses of spectrum shared among radio systems and services, field data needs to be collected. In this paper we design a testbed that can generate different 5G New Radio (NR) downlink transmission frames using the MATLAB 5G Toolbox, software-defined radio (SDR) hardware and GNU Radio Companion. This system will be used as a part of a testbed to study the RF interference caused by 5G transmissions to remote sensing receivers and evaluate different mechanisms for co-channel coexistence.more » « less
-
Radio Frequency (RF) sensing has emerged as a pivotal technology for non-intrusive human perception in various applications. However, the challenge of collecting extensive labeled RF data hampers the scalability and effectiveness of machine learning models in this domain. Our prior work introduced innovative generative AI frameworks - RF-Artificial Intelligence Generated Content using conditional generative adversarial networks and RF-Activity Class Conditional Latent Diffusion Model employing latent diffusion models - to synthesize high-quality RF sensing data across multiple platforms. Building upon this foundation, we explore future directions that leverage generative AI for enhanced 3D human pose estimation and beyond. Specifically, we discuss our recent advances in pose completion using latent diffusion transformers and propose additional research avenues: cross-modal generative models for RF sensing, real-time adaptive generative AI incorporating evolutionary learning for dynamic environments, and addressing security and privacy concerns in intelligent cyber-physical systems. These directions aim to further exploit the capabilities of generative AI to overcome challenges in RF sensing, paving the way for more robust, scalable, and secure applications.more » « less
An official website of the United States government

