skip to main content


Search for: All records

Award ID contains: 2033607

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A digital map of the built environment is useful for a range of economic, emergency response, and urban planning exercises such as helping find places in app driven interfaces, helping emergency managers know what locations might be impacted by a flood or fire, and helping city planners proactively identify vulnerabilities and plan for how a city is growing. Since its inception in 2004, OpenStreetMap (OSM) sets the benchmark for open geospatial data and has become a key player in the public, research, and corporate realms. Following the foundations laid by OSM, several open geospatial products describing the built environment have blossomed including the Microsoft USA building footprint layer and the OpenAddress project. Each of these products use different data collection methods ranging from public contributions to artificial intelligence, and if taken together, could provide a comprehensive description of the built environment. Yet, these projects are still siloed, and their variety makes integration and interoperability a major challenge. Here, we document an approach for merging data from these three major open building datasets and outline a workflow that is scalable to the continental United States (CONUS). We show how the results can be structured as a knowledge graph over which machine learning models are built. These models can help propagate and complete unknown quantities that can then be leveraged in disaster management.

     
    more » « less
  2. Spatial interpolation techniques play an important role in hydrology, as many point observations need to be interpolated to create continuous surfaces. Despite the availability of several tools and methods for interpolating data, not all of them work consistently for hydrologic applications. One of the techniques, the Laplace Equation, which is used in hydrology for creating flownets, has rarely been used for data interpolation. The objective of this study is to examine the efficiency of Laplace formulation (LF) in interpolating data used in hydrologic applications (hydrologic data) and compare it with other widely used methods such as inverse distance weighting (IDW), natural neighbor, and ordinary kriging. The performance of LF interpolation with other methods is evaluated using quantitative measures, including root mean squared error (RMSE) and coefficient of determination (R2) for accuracy, visual assessment for surface quality, and computational cost for operational efficiency and speed. Data related to surface elevation, river bathymetry, precipitation, temperature, and soil moisture are used for different areas in the United States. RMSE and R2 results show that LF is comparable to other methods for accuracy. LF is easy to use as it requires fewer input parameters compared to inverse distance weighting (IDW) and Kriging. Computationally, LF is faster than other methods in terms of speed when the datasets are not large. Overall, LF offers a robust alternative to existing methods for interpolating various hydrologic data. Further work is required to improve its computational efficiency. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  3. null (Ed.)
    While OWL and RDF are by far the most popular logic-based languages for Semantic Web Ontologies, some well-designed ontologies are only available in languages with a much richer expressivity, such as first-order logic (FOL) or the ISO standard Common Logic. This inhibits reuse of these ontologies by the wider Semantic Web Community. While converting OWL ontologies to FOL is straightforward, the reverse problem of finding the closest OWL approximation of an FOL ontology is undecidable. However, for most practical purposes, a ``good enough'' OWL approximation need not be perfect to enable wider reuse by the Semantic Web Community. This paper outlines such a conversion approach by first normalizing FOL sentences into a function-free prenex conjunctive normal (FF-PCNF) that strips away minor syntactic differences and then applying a pattern-based approach to identify common OWL axioms. It is tested on the over 2,000 FOL ontologies from the Common Logic Ontology Repository. 
    more » « less
  4. null (Ed.)