skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Full-bandwidth anisotropic Migdal-Eliashberg theory and its application to superhydrides
Abstract Migdal-Eliashberg theory is one of the state-of-the-art methods for describing conventional superconductors from first principles. However, widely used implementations assume a constant density of states around the Fermi level, which hinders a proper description of materials with distinct features in its vicinity. Here, we present an implementation of the Migdal-Eliashberg theory within the EPW code that considers the full electronic structure and accommodates scattering processes beyond the Fermi surface. To significantly reduce computational costs, we introduce a non-uniform sampling scheme along the imaginary axis. We demonstrate the power of our implementation by applying it to the sodalite-like clathrates YH6and CaH6, and to the covalently-bonded H3S and D3S. Furthermore, we investigate the effect of maximizing the density of states at the Fermi level in doped H3S and BaSiH8within the full-bandwidth treatment compared to the constant-density-of-states approximation. Our findings highlight the importance of this advanced treatment in such complex materials.  more » « less
Award ID(s):
2103991 2035518
PAR ID:
10516921
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Communications Physics
Volume:
7
Issue:
1
ISSN:
2399-3650
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A new member of the transition metal dichalcogenide (TMD) family, 2M-WS 2, has been recently discovered and shown to display superconductivity with a critical temperature (Tc) of 8.8 K, the highest Tc among superconducting TMDs at ambient pressure. Using first-principles calculations combined with the Migdal-Eliashberg formalism, we explore how the superconducting properties of 2M-WS 2 can be enhanced through doping. Mo, Nb, and Ta are used as dopants at the W sites, while Se is used at the S sites. We demonstrate that the monotonous decrease in the Tc observed experimentally for Mo and Se doping is due to the decrease in density of states at the Fermi level and the electron–phonon coupling of the low-energy phonons. In addition, we find that a noticeable increase in the electron–phonon coupling could be achieved when doping with Nb and Ta, leading to an enhancement of the Tc of up to 50% compared to the undoped compound. 
    more » « less
  2. Abstract Recently, room temperature superconductivity was measured in a carbonaceous sulfur hydride material whose identity remains unknown. Herein, first-principles calculations are performed to provide a chemical basis for structural candidates derived by doping H3S with low levels of carbon. Pressure stabilizes unusual bonding configurations about the carbon atoms, which can be six-fold coordinated as CH6entities within the cubic H3S framework, or four-fold coordinated as methane intercalated into the H-S lattice, with or without an additional hydrogen in the framework. The doping breaks degenerate bands, lowering the density of states at the Fermi level (NF), and localizing electrons in C-H bonds. Low levels of CH4doping do not increaseNFto values as high as those calculated for$$Im\bar{3}m$$ I m 3 ¯ m -H3S, but they can yield a larger logarithmic average phonon frequency, and an electron–phonon coupling parameter comparable to that ofR3m-H3S. The implications of carbon doping on the superconducting properties are discussed. 
    more » « less
  3. The recent theory-driven discovery of a class of clathrate hydrides (e.g., CaH6, YH6, YH9, and LaH10) with superconducting critical temperatures (Tc) well above 200 K has opened the prospects for “hot” superconductivity above room temperature under pressure. Recent efforts focus on the search for superconductors among ternary hydrides that accommodate more diverse material types and configurations compared to binary hydrides. Through extensive computational searches, we report the prediction of a unique class of thermodynamically stable clathrate hydrides structures consisting of two previously unreported H24and H30hydrogen clathrate cages at megabar pressures. Among these phases, LaSc2H24shows potential hot superconductivity at the thermodynamically stable pressure range of 167 to 300 GPa, with calculatedTcs up to 331 K at 250 GPa and 316 K at 167 GPa when the important effects of anharmonicity are included. The very high critical temperatures are attributed to an unusually large hydrogen-derived density of states at the Fermi level arising from the newly reported peculiar H30as well as H24cages in the structure. Our predicted introduction of Sc in the La–H system is expected to facilitate future design and realization of hot superconductors in ternary clathrate superhydrides. 
    more » « less
  4. Abstract We report evidence of a finite density of states at the Fermi level at the surface of epitaxial thin films of the narrow bandgap Mott insulator Sr3Ir2O7(001). The Brillouin zone critical points for Sr3Ir2O7(001) thin films have been determined by a comparison of the band mapping from angle-resolved photoemission spectroscopy and low energy electron diffraction. Angle-resolved x-ray photoemission studies reveal the surface termination of Sr3Ir2O7(001) is Sr–O. The absence of dispersion with photon energy, or changing wave vector along the surface normal, indicates the two-dimensional character of the bands contributing to the density of states close to the Fermi level for Sr3Ir2O7(001) thin films. Thus, the finite density of states at the Fermi level is attributed to surface states or surface resonances. The appearance of a finite density of states at the Fermi level is consistent with the increased conductivity with decreasing film thickness for ultrathin Sr3Ir2O7(001) films. 
    more » « less
  5. Flat bands that do not merely arise from weak interactions can produce exotic physical properties, such as superconductivity or correlated many-body effects. The quantum metric can differentiate whether flat bands will result in correlated physics or are merely dangling bonds. A potential avenue for achieving correlated flat bands involves leveraging geometrical constraints within specific lattice structures, such as the kagome lattice; however, materials are often more complex. In these cases, quantum geometry becomes a powerful indicator of the nature of bands with small dispersions. We present a simple, soft-chemical processing route to access a flat band with an extended quantum metric below the Fermi level. By oxidizing Ni-kagome material Cs2Ni3S4to CsNi3S4, we see a two orders of magnitude drop in the room temperature resistance. However, CsNi3S4is still insulating, with no evidence of a phase transition. Using experimental data, density functional theory calculations, and symmetry analysis, our results suggest the emergence of a correlated insulating state of unknown origin. 
    more » « less