Abstract The mechanism of unconventional superconductivity in correlated materials remains a great challenge in condensed matter physics. The recent discovery of superconductivity in infinite-layer nickelates, as an analog to high-Tccuprates, has opened a new route to tackle this challenge. By growing 8 nm Pr0.8Sr0.2NiO2films on the (LaAlO3)0.3(Sr2AlTaO6)0.7substrate, we successfully raise the superconducting onset transition temperatureTcin the widely studied SrTiO3-substrated nickelates from 9 K into 15 K, which indicates compressive strain is an efficient protocol to further enhance superconductivity in infinite-layer nickelates. Additionally, the x-ray absorption spectroscopy, combined with the first-principles and many-body simulations, suggest a crucial role of the hybridization between Ni and O orbitals in the unconventional pairing. These results also suggest the increase ofTcbe driven by the change of charge-transfer nature that would narrow the origin of general unconventional superconductivity in correlated materials to the covalence of transition metals and ligands.
more »
« less
Absence of 3a0 charge density wave order in the infinite-layer nickelate NdNiO2
Abstract A hallmark of many unconventional superconductors is the presence of many-body interactions that give rise to broken-symmetry states intertwined with superconductivity. Recent resonant soft X-ray scattering experiments report commensurate 3a0charge density wave order in infinite-layer nickelates, which has important implications regarding the universal interplay between charge order and superconductivity in both cuprates and nickelates. Here we present X-ray scattering and spectroscopy measurements on a series of NdNiO2+xsamples, which reveal that the signatures of charge density wave order are absent in fully reduced, single-phase NdNiO2. The 3a0superlattice peak instead originates from a partially reduced impurity phase where excess apical oxygens form ordered rows with three-unit-cell periodicity. The absence of any observable charge density wave order in NdNiO2highlights a crucial difference between the phase diagrams of cuprate and nickelate superconductors.
more »
« less
- PAR ID:
- 10568198
- Publisher / Repository:
- Nature
- Date Published:
- Journal Name:
- Nature Materials
- Volume:
- 23
- Issue:
- 4
- ISSN:
- 1476-1122
- Page Range / eLocation ID:
- 486 to 491
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Motivated by the recent observation of superconductivity withTc ~ 80 K in pressurized La3Ni2O71, we explore the structural and electronic properties ofA3Ni2O7bilayer nickelates (A = La-Lu, Y, Sc) as a function of pressure (0–150 GPa) from first principles including a Coulomb repulsion term. At ~ 20 GPa, we observe an orthorhombic-to-tetragonal transition in La3Ni2O7at variance with x-ray diffraction data, which points to so-far unresolved complexities at the onset of superconductivity, e.g., charge doping by variations in the oxygen stoichiometry. We compile a structural phase diagram that establishes chemical and external pressure as distinct and counteracting control parameters. We find unexpected correlations betweenTcand thein-planeNi-O-Ni bond angles for La3Ni2O7. Moreover, two structural phases with significantc+octahedral rotations and in-plane bond disproportionations are uncovered forA = Nd-Lu, Y, Sc that exhibit a pressure-driven electronic reconstruction in the Niegmanifold. By disentangling the involvement of basal versus apical oxygen states at the Fermi surface, we identify Tb3Ni2O7as an interesting candidate for superconductivity at ambient pressure. These results suggest a profound tunability of the structural and electronic phases in this novel materials class and are key for a fundamental understanding of the superconductivity mechanism.more » « less
-
Abstract Single crystals of the quasi-skutterudite compounds Ca3(Ir1-xRhx)4Sn13(3–4–13) were synthesized by flux growth and characterized by x-ray diffraction, energy dispersive x-ray spectroscopy, magnetization, resistivity, and radio frequency magnetic susceptibility techniques. The coexistence and competition between the charge density wave (CDW) and superconductivity was studied by varying the Rh/Ir ratio. The superconducting transition temperature, , varies from 7 K in pure Ir (x = 0) to 8.3 K in pure Rh (x = 1). Temperature-dependent electrical resistivity reveals monotonic suppression of the CDW transition temperature,TCDW(x). The CDW starts in pure Ir,x = 0, atTCDW≈ 40 K and extrapolates roughly linearly to zero at 0.53–0.58 under the superconducting dome. Magnetization and transport measurements show a significant influence of CDW on superconducting and normal states. Meissner expulsion is substantially reduced in the CDW region, indicating competition between the CDW and superconductivity. The low-temperature resistivity is higher in the CDW part of the phase diagram, consistent with the reduced density of states due to CDW gapping. Its temperature dependence just above shows signs of non-Fermi liquid behavior in a cone-like composition pattern. We conclude that the Ca3(Ir1-xRhx)4Sn13alloy is a good candidate for a composition-driven quantum critical point at ambient pressure.more » « less
-
Abstract The class ofAV3Sb5(A=K, Rb, Cs) kagome metals hosts unconventional charge density wave states seemingly intertwined with their low temperature superconducting phases. The nature of the coupling between these two states and the potential presence of nearby, competing charge instabilities however remain open questions. This phenomenology is strikingly highlighted by the formation of two ‘domes’ in the superconducting transition temperature upon hole-doping CsV3Sb5. Here we track the evolution of charge correlations upon the suppression of long-range charge density wave order in the first dome and into the second of the hole-doped kagome superconductor CsV3Sb5−xSnx. Initially, hole-doping drives interlayer charge correlations to become short-ranged with their periodicity diminished along the interlayer direction. Beyond the peak of the first superconducting dome, the parent charge density wave state vanishes and incommensurate, quasi-1D charge correlations are stabilized in its place. These competing, unidirectional charge correlations demonstrate an inherent electronic rotational symmetry breaking in CsV3Sb5, and reveal a complex landscape of charge correlations within its electronic phase diagram. Our data suggest an inherent 2kfcharge instability and competing charge orders in theAV3Sb5class of kagome superconductors.more » « less
-
We report evidence for superconductivity with onset temperatures up to 11 K in thin films of the infinite-layer nickelate parent compound . A combination of oxide molecular beam epitaxy and atomic hydrogen reduction yields samples with high crystallinity and low residual resistivities, a substantial fraction of which exhibit superconducting transitions. We survey a large series of samples with a variety of techniques, including electrical transport, scanning transmission electron microscopy, x-ray absorption spectroscopy, and resonant inelastic x-ray scattering, to investigate the possible origins of superconductivity. We propose that superconductivity could be intrinsic to the undoped infinite-layer nickelates but suppressed by disorder due to a possibly sign-changing order parameter, a finding which would necessitate a reconsideration of the nickelate phase diagram. Another possible hypothesis is that the parent materials can be hole doped from randomly dispersed apical oxygen atoms, which would suggest an alternative pathway for achieving superconductivity. Published by the American Physical Society2025more » « less