skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Equi-explanation Maps: Concise and Informative Global Summary Explanations
We propose equi-explanation maps to study the variation in model logic across the input space. These global model-agnostic structures partition the hyper-space of explanation features into regions of similar model logic. Equi-explanation maps act as a concise summary of instance explanations and can provide laymen an at-a-glance understanding of the basis on which the classifier makes its decisions. We thus propose the task of generating $$\epsilon$$-equi-explanation maps, a partitioning of the input space into subspaces such that the standard deviation of explanation vectors in a subspace do not exceed $$\epsilon$$. We adapt existing local and subspace explainability techniques like LIME and MUSE to generate equi-explanation maps on two binary classification datasets using four classification models and evaluate the quality of their partitioning. We find that these techniques produce a sub-optimal number of subspaces (making the maps harder to interpret) and have a considerable run time. We then propose E-map, a new divide-and-conquer based algorithm to produce $$\epsilon$$-equi-explanation maps. E-map is able to decrease the number of subspaces (and hence increase interpretability) and running time as compared to the previous systems for a fixed value of $$\epsilon$$. Finally, given a classifier decision boundary, we try to determine what would be an optimal value for the parameter $$\epsilon$$. We believe good explanation representation methods can increase the trustworthiness and understanding of machine learning models for critical real world tasks.  more » « less
Award ID(s):
1813662 2039449
PAR ID:
10357768
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 2022 ACM FAccT* Conference
Page Range / eLocation ID:
464 to 472
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Learning discriminative node representations benefits various downstream tasks in graph analysis such as community detection and node classification. Existing graph representation learning methods (e.g., based on random walk and contrastive learning) are limited to maximizing the local similarity of connected nodes. Such pair-wise learning schemes could fail to capture the global distribution of representations, since it has no explicit constraints on the global geometric properties of representation space. To this end, we propose Geometric Graph Representation Learning (G2R) to learn node representations in an unsupervised manner via maximizing rate reduction. In this way, G2R maps nodes in distinct groups (implicitly stored in the adjacency matrix) into different subspaces, while each subspace is compact and different subspaces are dispersedly distributed. G2R adopts a graph neural network as the encoder and maximizes the rate reduction with the adjacency matrix. Furthermore, we theoretically and empirically demonstrate that rate reduction maximization is equivalent to maximizing the principal angles between different subspaces. Experiments on real-world datasets show that G2R outperforms various baselines on node classification and community detection tasks. 
    more » « less
  2. null (Ed.)
    As machine learning methods see greater adoption and implementation in high-stakes applications such as medical image diagnosis, the need for model interpretability and explanation has become more critical. Classical approaches that assess feature importance (e.g., saliency maps) do not explain how and why a particular region of an image is relevant to the prediction. We propose a method that explains the outcome of a classification black-box by gradually exaggerating the semantic effect of a given class. Given a query input to a classifier, our method produces a progressive set of plausible variations of that query, which gradually changes the posterior probability from its original class to its negation. These counter-factually generated samples preserve features unrelated to the classification decision, such that a user can employ our method as a “tuning knob” to traverse a data manifold while crossing the decision boundary. Our method is model agnostic and only requires the output value and gradient of the predictor with respect to its input. 
    more » « less
  3. Physical systems ranging from elastic bodies to kinematic linkages are defined on high-dimensional configuration spaces, yet their typical low-energy configurations are concentrated on much lower-dimensional subspaces. This work addresses the challenge of identifying such subspaces automatically: given as input an energy function for a high-dimensional system, we produce a low-dimensional map whose image parameterizes a diverse yet low-energy submanifold of configurations. The only additional input needed is a single seed configuration for the system to initialize our procedure; no dataset of trajectories is required. We represent subspaces as neural networks that map a low-dimensional latent vector to the full configuration space, and propose a training scheme to fit network parameters to any system of interest. This formulation is effective across a very general range of physical systems; our experiments demonstrate not only nonlinear and very low-dimensional elastic body and cloth subspaces, but also more general systems like colliding rigid bodies and linkages. We briefly explore applications built on this formulation, including manipulation, latent interpolation, and sampling. 
    more » « less
  4. This work proposes a new computational framework for learning a structured generative model for real-world datasets. In particular, we propose to learn a Closed-loop Transcriptionbetween a multi-class, multi-dimensional data distribution and a Linear discriminative representation (CTRL) in the feature space that consists of multiple independent multi-dimensional linear subspaces. In particular, we argue that the optimal encoding and decoding mappings sought can be formulated as a two-player minimax game between the encoder and decoderfor the learned representation. A natural utility function for this game is the so-called rate reduction, a simple information-theoretic measure for distances between mixtures of subspace-like Gaussians in the feature space. Our formulation draws inspiration from closed-loop error feedback from control systems and avoids expensive evaluating and minimizing of approximated distances between arbitrary distributions in either the data space or the feature space. To a large extent, this new formulation unifies the concepts and benefits of Auto-Encoding and GAN and naturally extends them to the settings of learning a both discriminative and generative representation for multi-class and multi-dimensional real-world data. Our extensive experiments on many benchmark imagery datasets demonstrate tremendous potential of this new closed-loop formulation: under fair comparison, visual quality of the learned decoder and classification performance of the encoder is competitive and arguably better than existing methods based on GAN, VAE, or a combination of both. Unlike existing generative models, the so-learned features of the multiple classes are structured instead of hidden: different classes are explicitly mapped onto corresponding independent principal subspaces in the feature space, and diverse visual attributes within each class are modeled by the independent principal components within each subspace. 
    more » « less
  5. The algorithmic advancement of synchronizing maps is important in order to solve a wide range of practice problems with possible large-scale dataset. In this paper, we provide theoretical justifications for spectral techniques for the map synchronization problem, i.e., it takes as input a collection of objects and noisy maps estimated between pairs of objects, and outputs clean maps between all pairs of objects. We show that a simple normalized spectral method that projects the blocks of the top eigenvectors of a data matrix to the map space leads to surprisingly good results. As the noise is modelled naturally as random permutation matrix, this algorithm NormSpecSync leads to competing theoretical guarantees as state-of-the-art convex optimization techniques, yet it is much more efficient. We demonstrate the usefulness of our algorithm in a couple of applications, where it is optimal in both complexity and exactness among existing methods. 
    more » « less