skip to main content


Title: Equi-explanation Maps: Concise and Informative Global Summary Explanations
We propose equi-explanation maps to study the variation in model logic across the input space. These global model-agnostic structures partition the hyper-space of explanation features into regions of similar model logic. Equi-explanation maps act as a concise summary of instance explanations and can provide laymen an at-a-glance understanding of the basis on which the classifier makes its decisions. We thus propose the task of generating $\epsilon$-equi-explanation maps, a partitioning of the input space into subspaces such that the standard deviation of explanation vectors in a subspace do not exceed $\epsilon$. We adapt existing local and subspace explainability techniques like LIME and MUSE to generate equi-explanation maps on two binary classification datasets using four classification models and evaluate the quality of their partitioning. We find that these techniques produce a sub-optimal number of subspaces (making the maps harder to interpret) and have a considerable run time. We then propose E-map, a new divide-and-conquer based algorithm to produce $\epsilon$-equi-explanation maps. E-map is able to decrease the number of subspaces (and hence increase interpretability) and running time as compared to the previous systems for a fixed value of $\epsilon$. Finally, given a classifier decision boundary, we try to determine what would be an optimal value for the parameter $\epsilon$. We believe good explanation representation methods can increase the trustworthiness and understanding of machine learning models for critical real world tasks.  more » « less
Award ID(s):
1813662 2039449
NSF-PAR ID:
10357768
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 2022 ACM FAccT* Conference
Page Range / eLocation ID:
464 to 472
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work proposes a new computational framework for learning a structured generative model for real-world datasets. In particular, we propose to learn a Closed-loop Transcriptionbetween a multi-class, multi-dimensional data distribution and a Linear discriminative representation (CTRL) in the feature space that consists of multiple independent multi-dimensional linear subspaces. In particular, we argue that the optimal encoding and decoding mappings sought can be formulated as a two-player minimax game between the encoder and decoderfor the learned representation. A natural utility function for this game is the so-called rate reduction, a simple information-theoretic measure for distances between mixtures of subspace-like Gaussians in the feature space. Our formulation draws inspiration from closed-loop error feedback from control systems and avoids expensive evaluating and minimizing of approximated distances between arbitrary distributions in either the data space or the feature space. To a large extent, this new formulation unifies the concepts and benefits of Auto-Encoding and GAN and naturally extends them to the settings of learning a both discriminative and generative representation for multi-class and multi-dimensional real-world data. Our extensive experiments on many benchmark imagery datasets demonstrate tremendous potential of this new closed-loop formulation: under fair comparison, visual quality of the learned decoder and classification performance of the encoder is competitive and arguably better than existing methods based on GAN, VAE, or a combination of both. Unlike existing generative models, the so-learned features of the multiple classes are structured instead of hidden: different classes are explicitly mapped onto corresponding independent principal subspaces in the feature space, and diverse visual attributes within each class are modeled by the independent principal components within each subspace. 
    more » « less
  2. One of the most common types of models that helps us to understand neuron behavior is based on the Hodgkin–Huxley ion channel formulation (HH model). A major challenge with inferring parameters in HH models is non-uniqueness: many different sets of ion channel parameter values produce similar outputs for the same input stimulus. Such phenomena result in an objective function that exhibits multiple modes (i.e., multiple local minima). This non-uniqueness of local optimality poses challenges for parameter estimation with many algorithmic optimization techniques. HH models additionally have severe non-linearities resulting in further challenges for inferring parameters in an algorithmic fashion. To address these challenges with a tractable method in high-dimensional parameter spaces, we propose using a particular Markov chain Monte Carlo (MCMC) algorithm, which has the advantage of inferring parameters in a Bayesian framework. The Bayesian approach is designed to be suitable for multimodal solutions to inverse problems. We introduce and demonstrate the method using a three-channel HH model. We then focus on the inference of nine parameters in an eight-channel HH model, which we analyze in detail. We explore how the MCMC algorithm can uncover complex relationships between inferred parameters using five injected current levels. The MCMC method provides as a result a nine-dimensional posterior distribution, which we analyze visually with solution maps or landscapes of the possible parameter sets. The visualized solution maps show new complex structures of the multimodal posteriors, and they allow for selection of locally and globally optimal value sets, and they visually expose parameter sensitivities and regions of higher model robustness. We envision these solution maps as enabling experimentalists to improve the design of future experiments, increase scientific productivity and improve on model structure and ideation when the MCMC algorithm is applied to experimental data. 
    more » « less
  3. null (Ed.)
    As machine learning methods see greater adoption and implementation in high-stakes applications such as medical image diagnosis, the need for model interpretability and explanation has become more critical. Classical approaches that assess feature importance (e.g., saliency maps) do not explain how and why a particular region of an image is relevant to the prediction. We propose a method that explains the outcome of a classification black-box by gradually exaggerating the semantic effect of a given class. Given a query input to a classifier, our method produces a progressive set of plausible variations of that query, which gradually changes the posterior probability from its original class to its negation. These counter-factually generated samples preserve features unrelated to the classification decision, such that a user can employ our method as a “tuning knob” to traverse a data manifold while crossing the decision boundary. Our method is model agnostic and only requires the output value and gradient of the predictor with respect to its input. 
    more » « less
  4. null (Ed.)
    Deep neural network (DNN) has become increasingly popular and DNN testing is very critical to guarantee the correctness of DNN, i.e., the accuracy of DNN in this work. However, DNN testing suffers from a serious efficiency problem, i.e., it is costly to label each test input to know the DNN accuracy for the testing set, since labeling each test input involves multiple persons (even with domain-specific knowledge) in a manual way and the testing set is large-scale. To relieve this problem, we propose a novel and practical approach, called PACE (which is short for P ractical AC curacy E stimation), which selects a small set of test inputs that can precisely estimate the accuracy of the whole testing set. In this way, the labeling costs can be largely reduced by just labeling this small set of selected test inputs. Besides achieving a precise accuracy estimation, to make PACE more practical it is also required that it is interpretable, deterministic, and as efficient as possible. Therefore, PACE first incorporates clustering to interpretably divide test inputs with different testing capabilities (i.e., testing different functionalities of a DNN model) into different groups. Then, PACE utilizes the MMD-critic algorithm, a state-of-the-art example-based explanation algorithm, to select prototypes (i.e., the most representative test inputs) from each group, according to the group sizes, which can reduce the impact of noise due to clustering. Meanwhile, PACE also borrows the idea of adaptive random testing to select test inputs from the minority space (i.e., the test inputs that are not clustered into any group) to achieve great diversity under the required number of test inputs. The two parallel selection processes (i.e., selection from both groups and the minority space) compose the final small set of selected test inputs. We conducted an extensive study to evaluate the performance of PACE based on a comprehensive benchmark (i.e., 24 pairs of DNN models and testing sets) by considering different types of models (i.e., classification and regression models, high-accuracy and low-accuracy models, and CNN and RNN models) and different types of test inputs (i.e., original, mutated, and automatically generated test inputs). The results demonstrate that PACE is able to precisely estimate the accuracy of the whole testing set with only 1.181%∼2.302% deviations, on average, significantly outperforming the state-of-the-art approaches. 
    more » « less
  5. null (Ed.)
    Convolutional neural networks (CNNs) have become a key asset to most of fields in AI. Despite their successful performance, CNNs suffer from a major drawback. They fail to capture the hierarchy of spatial relation among different parts of an entity. As a remedy to this problem, the idea of capsules was proposed by Hinton. In this paper, we propose the SubSpace Capsule Network (SCN) that exploits the idea of capsule networks to model possible variations in the appearance or implicitly-defined properties of an entity through a group of capsule subspaces instead of simply grouping neurons to create capsules. A capsule is created by projecting an input feature vector from a lower layer onto the capsule subspace using a learnable transformation. This transformation finds the degree of alignment of the input with the properties modeled by the capsule subspace.We show that SCN is a general capsule network that can successfully be applied to both discriminative and generative models without incurring computational overhead compared to CNN during test time. Effectiveness of SCN is evaluated through a comprehensive set of experiments on supervised image classification, semi-supervised image classification and high-resolution image generation tasks using the generative adversarial network (GAN) framework. SCN significantly improves the performance of the baseline models in all 3 tasks. 
    more » « less