skip to main content


Search for: All records

Award ID contains: 2043803

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the present study, thermal stability of α-Ga2O3 under vacuum and ambient pressure conditions was investigated in situ by x-ray diffraction and transmission electron microscopy (TEM). It was observed that the thermal stability of α-Ga2O3 increased by 200 °C when pressure was lowered from an atmospheric to a vacuum level. This finding can be explained by oxygen diffusion under different oxygen partial pressures. In addition, in situ TEM imaging revealed that, once past the decomposition temperature, the onset of phase change propagates from the top crystal surface and accumulates strain, eventually resulting in a fractural film. The mechanism of α-Ga2O3 to β-Ga2O3 transition is evaluated through experiments and is discussed in this manuscript.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  2. Obtaining uniform silicon concentration, especially with low concentrations (ranging from 1 × 1016 to 1 × 1018 cm−3) by molecular beam epitaxy, has been challenging due to oxidation of a silicon solid source in the oxide environment. In this work, Si doping of β-Ga2O3 (010) films by diluted disilane as the Si source is investigated using hybrid plasma-assisted molecular beam epitaxy. The impact of growth temperature, disilane source concentration, and disilane flow rate on Si incorporation was studied by secondary ion mass spectrometry. Uniform Si concentrations ranging from 3 × 1016 to 2 × 1019 cm−3 are demonstrated. Si-doped β-Ga2O3 films with different silicon concentrations were grown on Fe-doped β-Ga2O3 (010) substrates. The electron concentration and mobility were determined using van de Pauw Hall measurements. A high mobility of 135 cm2/V s was measured for an electron concentration of 3.4 × 1017 cm−3 at room temperature.

     
    more » « less
  3. Ultra-wide-bandgap (UWBG) semiconductors, such as Ga2O3 and diamond, have been attracting increasing attention owing to their potential to realize high-performance power devices with high breakdown voltage and low on-resistance beyond those of SiC and GaN. Among numerous UWBG semiconductors, this work focuses on the corundum-structured α-Ga2O3, which is a metastable polymorph of Ga2O3. The large bandgap energy of 5.3 eV, a large degree of freedom in band engineering, and availability of isomorphic p-type oxides to form a hetero p–n junction make α-Ga2O3 an attractive candidate for power device applications. Promising preliminary prototype device structures have been demonstrated without advanced edge termination despite the high dislocation density in the epilayers owing to the absence of native substrates and lattice-matched foreign substrates. In this Perspective, we present an overview of the research and development of α-Ga2O3 for power device applications and discuss future research directions.

     
    more » « less