skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2047224

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 9, 2025
  2. Social networks form a major parts of people’s lives, and individuals often make important life decisions based on information that spreads through these networks. For this reason, it is important to know whether individuals from different protected groups have equal access to information flowing through a network. In this article, we define the Information Unfairness (IUF) metric, which quantifies inequality in access to information across protected groups. We then introduce MinIUF , an algorithm for reducing inequalities in information flow by adding edges to the network. Finally, we provide an in-depth analysis of information flow with respect to an attribute of interest, such as gender, across different types of networks to evaluate whether the structure of these networks allows groups to equally access information flowing in the network. Moreover, we investigate the causes of unfairness in such networks and how it can be improved. 
    more » « less
  3. The dynamics of charitable donor co-attendance networks can help fundraisers assess and improve fundraising outcomes. To improve understanding of donor-giving patterns, this study examines a large, multi-year network describing the co-attendance of donors at charitable fundraising events. We analyze the dynamics of co-attendance networks based on their topological structure, shift in node characteristics, and various network properties. Among other results, we observe a 76% increase in giving value for donors that showed increased centrality rank over nonoverlapped snapshots. In the data we examined, 19.14% of the donors whose giving increased and 16.24% of donors that remained in the same giving range exhibited increased co-attendance with high-capacity donors, whereas none of the donors that shifted to a lower class exhibited increased co-attendance with high-capacity donors over the periods, potentially illustrating a positive peer effect on donors. Some similarity was also observed in the giving characteristics of donors who co-attend events, with a 0.211 assortativity coefficient for the giving class of donors as a characteristic of donors when considering network dynamics using a rolling window size of 3 years. This is followed by analyzing the group-level similarities that reveal an interlinked clique of communities with diverse sizes. Our results show that large communities have a higher fraction of wealthy donors. 
    more » « less
  4. Recommendation systems have been used in many domains, and in recent years, ethical problems associated with such systems have gained serious attention. The problem of unfairness in friendship or link recommendation systems in social networks has begun attracting attention, as such unfairness can cause problems like segmentation and echo chambers. One challenge in this problem is that there are many fairness metrics for networks, and existing methods only consider the improvement of a single specific fairness indicator. In this work, we model the fair link prediction problem as a multi-armed bandit problem. We propose FairLink, a multi-armed bandit based framework that predicts new edges that are both accurate and well-behaved with respect to a fairness property of choice. This method allows the user to specify the desired fairness metric. Experiments on five real-world datasets show that FairLink can achieve a significant fairness improvement as compared to a standard recommendation algorithm, with only a small reduction in accuracy. 
    more » « less
  5. It has been observed that real-world social networks often exhibit stratification along economic or other lines, with consequences for class mobility and access to opportunities. With the rise in human interaction data and extensive use of online social networks, the structure of social networks (representing connections between individuals) can be used for measuring stratification. However, although stratification has been studied extensively in the social sciences, there is no single, generally applicable metric for measuring the level of stratification in a network. In this work, we first propose the novel Stratification Assortativity (StA) metric, which measures the extent to which a network is stratified into different tiers. Then, we use the StA metric to perform an in-depth analysis of the stratification of five co-authorship networks. We examine the evolution of these networks over 50 years and show that these fields demonstrate an increasing level of stratification over time, and, correspondingly, the trajectory of a researcher’s career is increasingly correlated with her entry point into the network. 
    more » « less
  6. Administrative errors in unemployment insurance (UI) decisions give rise to a public values conflict between efficiency and efficacy. We analyze whether artificial intelligence (AI) – in particular, methods in machine learning (ML) – can be used to detect administrative errors in UI claims decisions, both in terms of accuracy and normative tradeoffs. We use 16 years of US Department of Labor audit and policy data on UI claims to analyze the accuracy of 7 different random forest and deep learning models. We further test weighting schemas and synthetic data approaches to correcting imbalances in the training data. A random forest model using gradient descent boosting is more accurate, along several measures, and preferable in terms of public values, than every deep learning model tested. Adjusting model weights produces significant recall improvements for low-n outcomes, at the expense of precision. Synthetic data produces attenuated improvements and drawbacks relative to weights. 
    more » « less