skip to main content


This content will become publicly available on December 1, 2024

Title: Controls of thermal response of temperate lakes to atmospheric warming
Abstract

Atmospheric warming heats lakes, but the causes of variation among basins are poorly understood. Here, multi-decadal profiles of water temperatures, trophic state, and local climate from 345 temperate lakes are combined with data on lake geomorphology and watershed characteristics to identify controls of the relative rates of temperature change in water (WT) and air (AT) during summer. We show that differences in local climate (AT, wind speed, humidity, irradiance), land cover (forest, urban, agriculture), geomorphology (elevation, area/depth ratio), and water transparency explain >30% of the difference in rate of lake heating compared to that of the atmosphere. Importantly, the rate of lake heating slows as air warms (P < 0.001). Clear, cold, and deep lakes, especially at high elevation and in undisturbed catchments, are particularly responsive to changes in atmospheric temperature. We suggest that rates of surface water warming may decline relative to the atmosphere in a warmer future, particularly in sites already experiencing terrestrial development or eutrophication.

 
more » « less
Award ID(s):
2048031
NSF-PAR ID:
10499033
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Mountain lakes experience extreme interannual climate variation as well as rapidly warming air temperatures, making them ideal systems to understand lake‐climate responses. Snowpack and water temperature are highly correlated in mountain lakes, but we lack a complete understanding of underlying mechanisms. Motivated by predicted declines in snowfall with future temperature increases, we investigated how surface heat fluxes and lake warming responded to variation in snowpack, ice‐off, and summer weather patterns in a high elevation lake in the Sierra Nevada, California. Ice‐off timing determined the phenology of lake exposure to solar radiation, and was the dominant mechanism linking snowpack to lake temperature. The relative importance of heat loss fluxes (longwave radiation, latent and sensible heat exchange) varied among wet and dry years. Declines in snowpack and ice cover in mountain systems will reduce variability in lake thermal responses and increase the responsiveness of lake warming to atmospheric forcing.

     
    more » « less
  2. Abstract

    Warming winters will reduce ice cover and change under‐ice conditions in temperate mountain lakes, where snow contributes most of winter cover on lakes. Snow‐dominated mountain lakes are abundant and highly susceptible to climate warming, yet we lack an understanding of how climate variation and local attributes influence winter processes. We investigated climatic and intrinsic controls on ice phenology, water temperature, and bottom‐water dissolved oxygen (DO) in 15 morphologically diverse lakes in the Sierra Nevada and Klamath Mountains of California, USA, using high‐frequency measurements from multiple (2–5) winters. We found that ice phenology was determined by winter climate variables (snowfall and air temperature) that influence ice‐off timing, whereas ice‐on timing was relatively invariant among years. Lake size and morphology mediated the effect of climate on lake temperature and DO dynamics in early and late winter. Rates of hypolimnetic DO decline were highest in small, shallow lakes, and were unrelated to water temperature. Temperature and oxygen dynamics were more variable in small lakes because heavy snowfall caused ice submergence, mixing, and DO replenishment that affected the entire water column. As the persistence of snow declines in temperate mountain regions, autumn, and spring climatic conditions are expected to gain importance in regulating lake ice phenology. Water temperature and DO will likely increase in most lakes during winter as snowpack declines, but morphological attributes such as lake size will determine the sensitivity of ice phenology and under‐ice processes to climate change.

     
    more » « less
  3. Abstract

    Globally, phytoplankton abundance is increasing in lakes as a result of climate change and land‐use change. The relative importance of climate and land‐use drivers has been examined primarily for mesotrophic and eutrophic lakes. However, oligotrophic lakes show different sensitivity to climate and land‐use drivers than mesotrophic and eutrophic lakes, necessitating further exploration of the relative contribution of the two drivers of change to increased phytoplankton abundance. Here, we investigated how air temperature (a driver related to climate change) and nutrient load (a driver related to land‐use and climate change) interact to alter water quality in oligotrophic Lake Sunapee, New Hampshire, USA. We used long‐term data and the one‐dimensional hydrodynamic General Lake Model (GLM) coupled with Aquatic EcoDyanmics (AED) modules to simulate water quality. Over the 31‐year simulation, summer median chlorophyll‐aconcentration was positively associated with summer air temperature, whereas annual maximum chlorophyll‐aconcentration was positively associated with the previous 3 years of external phosphorus load. Scenario testing demonstrated a 2°C increase in air temperature significantly increased summer median chlorophyll‐aconcentration, but not annual maximum chlorophyll‐aconcentration. For both maximum and median chlorophyll‐aconcentration, doubling external nutrient loads of total nitrogen and total phosphorus at the same time, or doubling phosphorus alone, resulted in a significant increase. This study highlights the importance of aligning lake measurements with the ecosystem metrics of interest, as maximum chlorophyll‐aconcentration may be more uniquely sensitive to nutrient load and that typical summer chlorophyll‐aconcentration may increase due to warming alone.

     
    more » « less
  4. Abstract

    Climate change is altering biogeochemical, metabolic, and ecological functions in lakes across the globe. Historically, mountain lakes in temperate regions have been unproductive because of brief ice‐free seasons, a snowmelt‐driven hydrograph, cold temperatures, and steep topography with low vegetation and soil cover. We tested the relative importance of winter and summer weather, watershed characteristics, and water chemistry as drivers of phytoplankton dynamics. Using boosted regression tree models for 28 mountain lakes in Colorado, we examined regional, intraseasonal, and interannual drivers of variability in chlorophyllaas a proxy for lake phytoplankton. Phytoplankton biomass was inversely related to the maximum snow water equivalent (SWE) of the previous winter, as others have found. However, even in years with average SWE, summer precipitation extremes and warming enhanced phytoplankton biomass. Peak seasonal phytoplankton biomass coincided with the warmest water temperatures and lowest nitrogen‐to‐phosphorus ratios. Although links between snowpack, lake temperature, nutrients, and organic‐matter dynamics are increasingly recognized as critical drivers of change in high‐elevation lakes, our results highlight the additional influence of summer conditions on lake productivity in response to ongoing changes in climate. Continued changes in the timing, type, and magnitude of precipitation in combination with other global‐change drivers (e.g., nutrient deposition) will affect production in mountain lakes, potentially shifting these historically oligotrophic lakes toward new ecosystem states. Ultimately, a deeper understanding of these drivers and pattern at multiple scales will allow us to anticipate ecological consequences of global change better.

     
    more » « less
  5. Abstract

    This study evaluates the methods of identifying the heightziof the top of the convective boundary layer (CBL) during winter (December and January) over the Great Lakes and nearby land areas using observations taken by the University of Wyoming King Air research aircraft during the Lake-Induced Convection Experiment (1997/98) and Ontario Winter Lake-effect Systems (2013/14) field campaigns. Since CBLs facilitate vertical mixing near the surface, the most direct measurement ofziis that above which the vertical velocity turbulent fluctuations are weak or absent. Thus, we usezifrom the turbulence method as the “reference value” to whichzifrom other methods, based on bulk Richardson number (Rib), liquid water content, and vertical gradients of potential temperature, relative humidity, and water vapor mixing ratio, are compared. The potential temperature gradient method using a threshold value of 0.015 K m−1for soundings over land and 0.011 K m−1for soundings over lake provided the estimates ofzithat are most consistent with the turbulence method. The Ribthreshold-based method, commonly used in numerical simulation studies, underestimatedzi. Analyzing the methods’ performance on the averaging windowzavgwe recommend usingzavg= 20 or 50 m forziestimations for lake-effect boundary layers. The present dataset consists of both cloudy and cloud-free boundary layers, some having decoupled boundary layers above the inversion top. Because cases of decoupled boundary layers appear to be formed by nearby synoptic storms, we recommend use of the more general term, elevated mixed layers.

    Significance Statement

    The depthziof the convective atmospheric boundary layer (CBL) strongly influences precipitation rates during lake-effect snowstorms (LES). However, variousziapproximation methods produce significantly different results. This study utilizes extensive concurrently collected observations by project aircraft during two LES field studies [Lake-Induced Convection Experiment (Lake-ICE) and OWLeS] to assess howzifrom common estimation methods compare with “reference”ziderived from turbulent fluctuations, a direct measure of CBL mixing. For soundings taken both over land and lake; with cloudy or cloud-free conditions, potential temperature gradient (PTG) methods provided the best agreement with the referencezi. A method commonly employed in numerical simulations performed relatively poorly. Interestingly, the PTG method worked equally well for “coupled” and elevated decoupled CBLs, commonly associated with nearby cyclones.

     
    more » « less