skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2048336

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We investigate changes in the vertical structure of the ocean temperature annual cycle amplitude (TEMPAC) down to a depth of 300 m, providing important insights into the relative contributions of anthropogenic and natural influences. Using observations and phase 6 of the Coupled Model Intercomparison Project (CMIP6) simulations, we perform a detection and attribution analysis by applying a standard pattern-based “fingerprint” method to zonal-mean TEMPACanomalies for three major ocean basins. In all model historical simulations and observational datasets, TEMPACincreases significantly in the surface layer, except in the Southern Ocean, and weakens within the subsurface ocean. There is a decrease in TEMPACbelow the annual-mean mixed layer depth, mainly due to a deep-reaching winter warming signal. The temporal evolution of signal-to-noise (S/N) ratios in observations indicates an identifiable anthropogenic fingerprint in both surface and interior ocean annual temperature cycles. These findings are consistent across three different observational datasets, with variations in fingerprint detection time likely related to differences in dataset coverage, interpolation method, and accuracy. Analysis of CMIP6 single-forcing simulations reveals the dominant influence of greenhouse gases and anthropogenic aerosols on TEMPACchanges. Our identification of an anthropogenic TEMPACfingerprint is robust to the selection of different analysis periods. S/N ratios derived with model data only are consistently larger than ratios calculated with observational signals, primarily due to model versus observed TEMPACdifferences in the Atlantic. Human influence on the seasonality of surface and subsurface ocean temperature may have profound consequences for fisheries, marine ecosystems, and ocean chemistry. Significance StatementThe seasonal cycle is a fundamental aspect of our climate, and gaining insight into how anthropogenic forcing has impacted seasonality is of scientific, economic, and societal importance. Using observations and CMIP6 model simulations, this research applies a pattern-based detection and attribution method to ocean temperature annual cycle amplitude (TEMPAC) down to 300 m across three major ocean basins. Key findings reveal significant increases in surface layer TEMPACexcept in the Southern Ocean and a weakening of TEMPACwithin the subsurface ocean. Importantly, the analysis confirms human influence on TEMPAC. These findings underscore the profound influence of human-caused climate change on the world’s oceans and have important implications for marine ecosystems, fisheries, and ocean chemistry. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Abstract The storage of anthropogenic heat in oceans is geographically inhomogeneous, leading to differential warming rates among major ocean basins with notable regional climate impacts. Our analyses of observation-based datasets show that the average warming rate of 0–2000-m Atlantic Ocean since 1960 is nearly threefold stronger than that of the Indo-Pacific Oceans. This feature is robustly captured by historical simulations of phase 6 of Coupled Model Intercomparison Project (CMIP6) and is projected to persist into the future. In CMIP6 simulations, the ocean heat uptake through surface heat fluxes plays a central role in shaping the interbasin warming contrasts. In addition to the slowdown of the Atlantic meridional overturning circulation as stressed in some existing studies, alterations of atmospheric conditions under greenhouse warming are also essential for the increased surface heat flux into the North Atlantic. Specifically, the reduced anthropogenic aerosol concentration in the North Atlantic since the 1980s has been favorable for the enhanced Atlantic Ocean heat uptake in CMIP6 models. Another previously overlooked factor is the geographic shape of the Atlantic Ocean which is relatively wide in midlatitudes and narrow in low latitudes, in contrast to that of the Indo-Pacific Oceans. Combined with the poleward migration of atmospheric circulations, which leads to the meridional pattern of surface heat uptake with broadly enhanced heat uptake in midlatitude oceans due to reduced surface wind speed and cloud cover, the geographic shape effect renders a higher basin-average heat uptake in the Atlantic. 
    more » « less
  3. Abstract During recent decades, both greenhouse gases (GHGs) and anthropogenic aerosols (AAs) drove major changes in the Earth's energy imbalance. However, their respective fingerprints in changes to ocean heat content (OHC) have been difficult to isolate and detect when global or hemispheric averages are used. Based on a pattern recognition analysis, we show that AAs drive an interhemispheric asymmetry within the 20°‐35° latitude band in historical OHC change due to the southward shift of the atmospheric and ocean circulation system. This forced pattern is distinct from the GHG‐induced pattern, which dominates the asymmetry in higher latitudes. Moreover, it is found that this significant aerosol‐forced OHC trend pattern can only be captured in analyzed periods of 20 years or longer and including 1975–1990. Using these distinct spatiotemporal characteristics, we show that the fingerprint of aerosol climate forcing in ocean observations can be distinguished from both the stronger GHG‐induced signals and internal variability. 
    more » « less
  4. Abstract Separating the climate response to external forcing from internal climate variability is a key challenge. While most previous studies have focused on surface responses, here we examine zonal‐mean patterns of North Pacific subsurface temperature responses. In particular, the changes since 1950 driven by anthropogenic aerosol emissions are found by using a pattern recognition method. Based on the single‐forcing large‐ensemble simulations from two models, we show that aerosol forcing caused a nonmonotonic temporal response and a characteristic zonal‐mean pattern within North Pacific, which is distinct from the pattern associated with internal variability. The aerosol‐forced pattern with the nonmonotonic temporal feature shows a substantial temperature change in subpolar regions and a reversed change on the southern flank of the subtropical gyre. A similar characteristic pattern and nonmonotonic time evolution are extracted from the subsurface observations, which likely reflect the subsurface responses to the aerosol forcing, although differences exist with the simulated responses. 
    more » « less
  5. Abstract Unlike greenhouse gases (GHGs), anthropogenic aerosol (AA) concentrations have increased and then decreased over the past century or so, with the timing of the peak concentration varying in different regions. To date, it has been challenging to separate the climate impact of AAs from that due to GHGs and background internal variability. We use a pattern recognition method, taking advantage of spatiotemporal covariance information, to isolate the forced patterns for the surface ocean and associated atmospheric variables from the all-but-one forcing Community Earth System Model ensembles. We find that the aerosol-forced responses are dominated by two leading modes, with one associated with the historical increase and future decrease of global mean aerosol concentrations (dominated by the Northern Hemisphere sources) and the other due to the transition of the primary sources of AA from the west to the east and also from Northern Hemisphere extratropical regions to tropical regions. In particular, the aerosol transition effect, to some extent compensating the global mean effect, exhibits a zonal asymmetry in the surface temperature and salinity responses. We also show that this transition effect dominates the total AA effect during recent decades, e.g., 1967–2007. 
    more » « less
  6. We provide the first scientific evidence that a human-caused signal in the seasonal cycle of sea surface temperature (SST) has emerged from the background noise of natural variability. Geographical patterns of changes in SST seasonal cycle amplitude (SSTAC) reveal two distinctive features: an increase at mid-latitudes in the Northern Hemisphere related to mixed-layer depth changes, and a robust dipole pattern between 40˚S and 55˚S in the Southern Hemisphere which is mainly driven by surface wind changes. The model-predicted pattern of SSTAC change is identifiable with high statistical confidence in four observed SST products and in 51 individual model realizations of historical climate evolution. Simulations with individual forcing reveal that greenhouse gas increases drive most of the change in SSTAC, with smaller but distinct contributions from anthropogenic aerosol and ozone forcing. The robust human influence identified here on the seasonality of SST is likely to have wide-ranging impacts on marine ecosystems. 
    more » « less
  7. Modeled water-mass changes in the North Pacific thermocline, both in the subsurface and at the surface, reveal the impact of the competition between anthropogenic aerosols (AAs) and greenhouse gases (GHGs) over the past 6 decades. The AA effect overwhelms the GHG effect during 1950–1985 in driving salinity changes on density surfaces, while after 1985 the GHG effect dominates. These subsurface water-mass changes are traced back to changes at the surface, of which ~70% stems from the migration of density surface outcrops, equatorward due to regional cooling by AAs and subsequent poleward due to warming by GHGs. Ocean subduction connects these surface outcrop changes to the main thermocline. Both observations and models reveal this transition in climate forcing around 1985 and highlight the important role of AA climate forcing on our oceans’ water masses. 
    more » « less