skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The competition between anthropogenic aerosol and greenhouse gas climate forcing is revealed by North Pacific water-mass changes
Modeled water-mass changes in the North Pacific thermocline, both in the subsurface and at the surface, reveal the impact of the competition between anthropogenic aerosols (AAs) and greenhouse gases (GHGs) over the past 6 decades. The AA effect overwhelms the GHG effect during 1950–1985 in driving salinity changes on density surfaces, while after 1985 the GHG effect dominates. These subsurface water-mass changes are traced back to changes at the surface, of which ~70% stems from the migration of density surface outcrops, equatorward due to regional cooling by AAs and subsequent poleward due to warming by GHGs. Ocean subduction connects these surface outcrop changes to the main thermocline. Both observations and models reveal this transition in climate forcing around 1985 and highlight the important role of AA climate forcing on our oceans’ water masses.  more » « less
Award ID(s):
2048336 1936222
PAR ID:
10494211
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Association for the Advancement of Science
Date Published:
Journal Name:
Science Advances
Volume:
9
Issue:
38
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Unlike greenhouse gases (GHGs), anthropogenic aerosol (AA) concentrations have increased and then decreased over the past century or so, with the timing of the peak concentration varying in different regions. To date, it has been challenging to separate the climate impact of AAs from that due to GHGs and background internal variability. We use a pattern recognition method, taking advantage of spatiotemporal covariance information, to isolate the forced patterns for the surface ocean and associated atmospheric variables from the all-but-one forcing Community Earth System Model ensembles. We find that the aerosol-forced responses are dominated by two leading modes, with one associated with the historical increase and future decrease of global mean aerosol concentrations (dominated by the Northern Hemisphere sources) and the other due to the transition of the primary sources of AA from the west to the east and also from Northern Hemisphere extratropical regions to tropical regions. In particular, the aerosol transition effect, to some extent compensating the global mean effect, exhibits a zonal asymmetry in the surface temperature and salinity responses. We also show that this transition effect dominates the total AA effect during recent decades, e.g., 1967–2007. 
    more » « less
  2. Abstract During recent decades, both greenhouse gases (GHGs) and anthropogenic aerosols (AAs) drove major changes in the Earth's energy imbalance. However, their respective fingerprints in changes to ocean heat content (OHC) have been difficult to isolate and detect when global or hemispheric averages are used. Based on a pattern recognition analysis, we show that AAs drive an interhemispheric asymmetry within the 20°‐35° latitude band in historical OHC change due to the southward shift of the atmospheric and ocean circulation system. This forced pattern is distinct from the GHG‐induced pattern, which dominates the asymmetry in higher latitudes. Moreover, it is found that this significant aerosol‐forced OHC trend pattern can only be captured in analyzed periods of 20 years or longer and including 1975–1990. Using these distinct spatiotemporal characteristics, we show that the fingerprint of aerosol climate forcing in ocean observations can be distinguished from both the stronger GHG‐induced signals and internal variability. 
    more » « less
  3. Abstract Arctic amplification (AA), the greater Arctic surface warming compared to the global average, has been widely attributed to increasing concentrations of greenhouse gases (GHG). However, less is known about the impacts of other forcings - notably, anthropogenic aerosols (AER) - and how they may compare to the impacts of GHG. Here we analyze sets of climate model simulations, specifically designed to isolate the AER and GHG effects on global climate. Surprisingly, we find stronger AA produced by AER than by GHG during the 1955–1984 period, when the strongest global AER increase. This stronger AER-induced AA is due to a greater sensitivity of Arctic sea ice, and associated changes in ocean-to-atmosphere heat exchange, to AER forcing. Our findings highlight the asymmetric Arctic climate response to GHG and AER forcings, and show that clean air policies which have reduced aerosol emissions may have exacerbated the Arctic warming over the past few decades. 
    more » « less
  4. Abstract The temperature of the subsurface water entrained into the surface mixed layer plays a key role in controlling the sea surface temperature (SST) and its interannual variability in the equatorial Pacific. In this paper, we combine a hyperbolic tangent function bounded by the warm pool SST and centered at the thermocline depth with a variable sharpness parameter to describe the time‐space evolutions of the subsurface temperature. Under simple approximations of the sharpness parameter, this concise expression becomes remarkably efficient in capturing the observed and climate‐model simulated subsurface temperature variability in terms of anomalies of the thermocline depth and SST of the El Niño‐Southern Oscillation (ENSO) phenomenon. The formulations for the subsurface temperature and thermocline sharpness developed in this work should be useful tools for evaluating and understanding the role of the thermocline feedback in ENSO behaviors in both theoretical and comprehensive climate models. 
    more » « less
  5. Abstract In the era of escalating climate change, understanding human impacts on marine heatwaves (MHWs) becomes essential. This study harnesses climate model historical and single forcing simulations to delve into the individual roles of anthropogenic greenhouse gases (GHGs) and aerosols in shaping the characteristics of global MHWs over the past several decades. The results suggest that GHG variations lead to longer-lasting, more frequent, and intense MHWs. In contrast, anthropogenic aerosols markedly curb the intensity and growth of MHWs. Further analysis of the sea surface temperature (SST) probability distribution reveals that anthropogenic GHGs and aerosols have opposing effects on the tails of the SST probability distribution, causing the tails to expand and contract, respectively. Climate extremes such as MHWs are accordingly promoted and reduced. Our study underscores the significant impacts of anthropogenic GHGs and aerosols on MHWs, which go far beyond the customary concept that these anthropogenic forcings modulate climate extremes by shifting global SST probabilities via modifying the mean-state SST. 
    more » « less