skip to main content

Search for: All records

Award ID contains: 2052497

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Although the concept of connectivity is ubiquitous in ecology and evolution, its definition is often inconsistent, particularly in interdisciplinary research. In an ecological context, population connectivity refers to the movement of individuals or species across a landscape. It is measured by locating organisms and tracking their occurrence across space and time. In an evolutionary context, connectivity is typically used to describe levels of current and past gene flow, calculated from the degree of genetic similarity between populations. Both connectivity definitions are useful in their specific contexts, but rarely are these two perspectives combined. Different definitions of connectivity could result in misunderstandings across subdisciplines. Here, we unite ecological and evolutionary perspectives into a single unifying framework by advocating for connectivity to be conceptualized as a generational continuum. Within this framework, connectivity can be subdivided into three timescales: (1) within a generation (e.g., movement), (2) across one parent-offspring generation (e.g., dispersal), and (3) across two or more generations (e.g., gene flow), with each timescale determining the relevant context and dictating whether the connectivity has ecological or evolutionary consequences. Applying our framework to real-world connectivity questions can help to identify sampling limitations associated with a particular methodology, further develop research questions and hypotheses, and investigate eco-evolutionary feedback interactions that span the connectivity continuum. We hope this framework will serve as a foundation for conducting and communicating research across subdisciplines, resulting in a more holistic understanding of connectivity in natural systems. 
    more » « less
    Free, publicly-accessible full text available May 24, 2024
  2. Free, publicly-accessible full text available May 1, 2024
  3. Elephant seals sleep 2 hours a day while diving for months at sea, rivaling the record for the least sleep among mammals. 
    more » « less
    Free, publicly-accessible full text available April 21, 2024
  4. What new questions could ecophysiologists answer if physio-logging research was fully reproducible? We argue that technical debt (computational hurdles resulting from prioritizing short-term goals over long-term sustainability) stemming from insufficient cyberinfrastructure (field-wide tools, standards, and norms for analyzing and sharing data) trapped physio-logging in a scientific silo. This debt stifles comparative biological analyses and impedes interdisciplinary research. Although physio-loggers (e.g., heart rate monitors and accelerometers) opened new avenues of research, the explosion of complex datasets exceeded ecophysiology’s informatics capacity. Like many other scientific fields facing a deluge of complex data, ecophysiologists now struggle to share their data and tools. Adapting to this new era requires a change in mindset, from “data as a noun” (e.g., traits, counts) to “data as a sentence”, where measurements (nouns) are associate with transformations (verbs), parameters (adverbs), and metadata (adjectives). Computational reproducibility provides a framework for capturing the entire sentence. Though usually framed in terms of scientific integrity, reproducibility offers immediate benefits by promoting collaboration between individuals, groups, and entire fields. Rather than a tax on our productivity that benefits some nebulous greater good, reproducibility can accelerate the pace of discovery by removing obstacles and inviting a greater diversity of perspectives to advance science and society. In this article, we 1) describe the computational challenges facing physio-logging scientists and connect them to the concepts of technical debt and cyberinfrastructure , 2) demonstrate how other scientific fields overcame similar challenges by embracing computational reproducibility, and 3) present a framework to promote computational reproducibility in physio-logging, and bio-logging more generally. 
    more » « less