skip to main content


Search for: All records

Award ID contains: 2052810

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Four different experimental approaches for rapid estimation of fatigue limit (endurance limit) based on energy dissipation during cyclic loading are discussed. The presented approaches use energy dissipation and thermography and can reliably evaluate the fatigue limit of material by conducting the fatigue test on a single specimen. Results show that the released energy due to damage accumulation at the stress levels above the fatigue limit changes the trend of energy dissipation and that this trend can be used to predict the fatigue limit. Experimental results on CS 1018 and SS 304 specimens are presented to illustrate the utility of the proposed methods.

     
    more » « less
  2. Free, publicly-accessible full text available June 1, 2024
  3. The solid-state additive friction stir deposition (AFSD) process is a layer-by-layer metal 3D-printing technology. In this study, AFSD is used to fabricate Al–Cu–Li 2050 alloy parts. The hardness values for various regions of the as-deposited built parts are measured, and the results are contrasted with those of the feedstock material. The as-fabricated Al2050 parts are found to have a unique hardness distribution due to the location-specific variations in the processing temperature profile. The XRD results indicate the presence of the secondary phases in the deposited parts, and EDS mapping confirms the formation of detectable alloying particles in the as-deposited Al2050 matrix. The AFSD thermal–mechanical process causes the unique hardness distribution and the reduced microhardness level in the AFSD components, in contrast to those of the feedstock material. 
    more » « less