In this paper, small blocks of 17-4 PH stainless steel were manufactured via extrusion-based bound powder extrusion (BPE)/atomic diffusion additive manufacturing (ADAM) technology in two different orientations. Ultrasonic bending-fatigue and uniaxial tensile tests were carried out on the test specimens prepared from the AM blocks. Specifically, a recently-introduced small-size specimen design is employed to carry out time-efficient fatigue tests. Based on the results of the testing, the stress–life (S-N) curves were created in the very high-cycle fatigue (VHCF) regime. The effects of the printing orientation on the fatigue life and tensile strength were discussed, supported by fractography taken from the specimens’ fracture surfaces. The findings of the tensile test and the fatigue test revealed that vertically-oriented test specimens had lower ductility and a shorter fatigue life than their horizontally-oriented counterparts. The resulting S-N curves were also compared against existing data in the open literature. It is concluded that the large-sized pores (which originated from the extrusion process) along the track boundaries strongly affect the fatigue life and elongation of the AM parts.
more »
« less
A Thermodynamic Framework for Rapid Prediction of S-N Curves Using Temperature Rise at Steady-State
Abstract Building S-N curves for materials traditionally involves conducting numerous fatigue tests, resulting in a time- consuming and expensive experimental procedure that can span several weeks. Thus, there is a need for a more efficient approach to extract the S-N curves. The primary purpose of this research is to propose a reliable approach in the framework of thermodynamics for the rapid prediction of fatigue failure at different stress levels. The proposed method aims to offer a simple and efficient means of extracting the S-N curve of a material. A method is introduced based on the principles of thermodynamics. It uses the fracture fatigue entropy (FFE) threshold to estimate the fatigue life by conducting a limited number of cycles at each stress level and measuring the temperature rise during the steady-state stage of fatigue. An extensive set of experimental results with carbon steel 1018 and SS 316 are conducted to illustrate the utility of the approach. Also, the efficacy of the approach in characterizing the fatigue in axial and bending loadings of SAE 1045 and SS304 specimens is presented. It successfully predicts fatigue life and creates the S-N curves. The effectiveness of the approach is evaluated successfully for different materials under different loading types. The results show that the temperature rise is an indicator of the severity of fatigue and can be used to predict life.
more »
« less
- Award ID(s):
- 2052810
- PAR ID:
- 10518717
- Publisher / Repository:
- SEM
- Date Published:
- Journal Name:
- Experimental Mechanics
- Volume:
- 64
- Issue:
- 2
- ISSN:
- 0014-4851
- Page Range / eLocation ID:
- 167 to 180
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Laser powder bed fusion (LPBF) is an enabling process manufacture of complex metal components. However, LPBF is prone to generate geometrical defects (e.g., porosity, lack of fusion), which causes a significant fatigue scattering. However, LPBF fatigue scattering data and analysis in the literature are not only sparse and limited to tension-compression mode but also inconsistent. This article presents a robust high-frequency fatigue testing method to construct stress-cycle curves of SS 316L to understand the scattering nature and predict the scattering pattern. A series of bending fatigue tests are performed at different stress amplitudes. Two different runout criteria are used to investigate fatigue life, fatigue limits, and scattering. The endurance limit reaches around 300 MPa for the defect size distribution at the selected process space. The defect size-based fatigue limit model is found to underestimate the endurance limit by about 30 MPa when comparing with the experimental data. Fatigue scattering is further calculated by using 95% prediction intervals, showing that low fatigue scattering is present at high stresses while a large variation of fatigue life occurs at stresses near the knee point.more » « less
-
null (Ed.)Abstract An experimental study was conducted to study the effects of geometric size and surface treatment on the fatigue life of fused filament fabrication (FFF) manufactured acrylonitrile butadiene styrene (ABS) parts. Moore rotating-beam fatigue tests were conducted with four different levels of loadings to obtain the S–N curves. Two different sizes (control size and large size) and three different surface treatment methods (as-printed, acetone-treated, and sandpaper polished) were studied. The larger specimens had significantly decreased fatigue life because of a larger volume, and hence a greater probability of defects for crack initiation and propagation, as compared with the control specimen. The acetone-treated specimen had a smooth surface. Its fatigue life, however, decreased significantly because the acetone treatment caused internal damage that weakened the specimen and was reported for the first time. The sandpaper polished specimen also had a smooth surface, but its effect on the fatigue life was insignificant because the extruded filament direction on the specimen surface was parallel to the loading direction. The present results lead to a better understanding of the effects of geometric size and surface treatment on the fatigue performance of FFF specimens. The study also provides important insights for the design of part size and surface treatment of three-dimensional (3D) printed plastic components for fatigue loading end-use applications.more » « less
-
Abstract This study uses the Taguchi optimization methodology to optimize the fatigue performance of short carbon fiber-reinforced polyamide samples printed via fused deposition modeling (FDM). The optimal printing properties that maximize the fatigue limit were determined to be 0.075 mm layer thickness, 0.4 mm infill line distance, 50 mm/s printing speed, and 55 °C chamber temperature with layer thickness being the most critical parameter. To qualify fatigue endurance limit, the energy dissipation in uniaxial fatigue was quantified by using hysteresis energy and temperature rise at steady state. From these results, the fatigue limit for a specimen printed with optimized printing parameters was predicted to be 69 and 70 MPa from hysteresis energy and temperature rise at steady state methods, consecutively, and it was experimentally determined to be 67 MPa. This work demonstrates the effectiveness of the Taguchi optimization method when applied to additive manufacturing and the swift ability to predict the fatigue limit of a material with only one specimen to produce optimal additively manufactured components for industrial applications, as validated by experimental fatigue testing.more » « less
-
A reliable approach based on an entropy-damage model for assessing remaining useful fatigue life is presented. Two damage models are presented and evaluated to assess their effectiveness in predicting remaining useful life. The first model focuses on reduced toughness caused by fatigue degradation, while the second is based on accumulating entropy during fatigue loading. The entropy-based approach employs infrared thermography to anticipate entropy accumulation and damage status. Outcomes reveal that the entropy-driven technique offers enhanced precision. Moreover, its damage growth rate remains consistent, regardless of the number of cycles leading to failure, ensuring a more stable tracking of damage evolution. It successfully predicts the remaining useful life and can treat variable load sequencing without knowing the loading history. An extensive set of experimental results with carbon steel 1018 are presented to illustrate the utility of the approach.more » « less
An official website of the United States government

