skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2054888

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider weak solutions of the inhomogeneous non-cutoff Boltzmann equa- tion in a bounded domain with any of the usual physical boundary conditions: in-flow, bounce-back, specular-reflection and diffuse-reflection. When the mass, energy and entropy densities are bounded above, and the mass density is bounded away from a vacuum, we obtain an estimate of the Lāˆž norm of the solution de- pending on the macroscopic bounds on these hydrodynamic quantities only. This is a regularization effect in the sense that the initial data is not required to be bounded. We present a proof based on variational ideas, which is fundamentally different to the proof that was previously known for the equation in periodic spatial domains 
    more » « less
  2. We obtain local Holder continuity estimates up to the boundary for a kinetic Fokker-Planck equation with rough coefficients, with the prescribed influx boundary condition. Our result extends some recent developments that incorporate De Giorgi methods to kinetic Fokker-Planck equations. We also obtain higher order asymptotic estimates near the incoming part of the boundary. In particular, when the equation has a zero boundary conditions and no source term, we prove that the solution vanishes at infinite order on the incoming part of the boundary. 
    more » « less
  3. We derive C āˆž C^\infty a priori estimates for solutions of the inhomogeneous Boltzmann equation without cut-off, conditional to pointwise bounds on their mass, energy and entropy densities. We also establish decay estimates for large velocities, for all derivatives of the solution. 
    more » « less
  4. The purpose of this paper is to show how the combination of the well-known results for convergence to equilibrium and conditional regularity, in addition to a short-time existence result, lead to a quick proof of the existence of global smooth solutions for the non cutoff Boltzmann equation when the initial data is close to equilibrium. We include a short-time existence result for polynomially-weighted $$ L^\infty $$ initial data. From this, we deduce that if the initial data is sufficiently close to a Maxwellian in this norm, then a smooth solution exists globally in time. 
    more » « less