The existence and stability of the Landau equation (1936) in a general bounded domain with a physical boundary condition is a long-outstanding open problem. This work proves the global stability of the Landau equation with the Coulombic potential in a general smooth bounded domain with the specular reflection boundary condition for initial perturbations of the Maxwellian equilibrium states. The highlight of this work also comes from the low-regularity assumptions made for the initial distribution. This work generalizes the recent global stability result for the Landau equation in a periodic box (Kim et al. in Peking Math J, 2020). Our methods consist of the generalization of the wellposedness theory for the Fokker–Planck equation (Hwang et al. SIAM J Math Anal 50(2):2194–2232, 2018; Hwang et al. Arch Ration Mech Anal 214(1):183–233, 2014) and the extension of the boundary value problem to a whole space problem, as well as the use of a recent extension of De Giorgi–Nash–Moser theory for the kinetic Fokker–Planck equations (Golse et al. Ann Sc Norm Super Pisa Cl Sci 19(1):253–295, 2019) and the Morrey estimates (Bramanti et al. J Math Anal Appl 200(2):332–354, 1996) to further control the velocity derivatives, which ensures the uniqueness. Our methods provide a new understanding of the grazing collisions in the Landau theory for an initial-boundary value problem.
more »
« less
Holder estimates for kinetic Fokker-Planck equations up to the boundary
We obtain local Holder continuity estimates up to the boundary for a kinetic Fokker-Planck equation with rough coefficients, with the prescribed influx boundary condition. Our result extends some recent developments that incorporate De Giorgi methods to kinetic Fokker-Planck equations. We also obtain higher order asymptotic estimates near the incoming part of the boundary. In particular, when the equation has a zero boundary conditions and no source term, we prove that the solution vanishes at infinite order on the incoming part of the boundary.
more »
« less
- PAR ID:
- 10420094
- Date Published:
- Journal Name:
- Ars inveniendi analytica
- ISSN:
- 2769-8505
- Page Range / eLocation ID:
- Paper No6
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We establish existence of finite energy weak solutions to the kinetic Fokker-Planck equation and the linear Landau equation near Maxwellian, in the presence of specular reflection boundary condition for general domains. Moreover, by using a method of reflection and the \begin{document}$$ S_p $$\end{document} estimate of [7], we prove regularity in the kinetic Sobolev spaces \begin{document}$$ S_p $$\end{document} and anisotropic Hölder spaces for such weak solutions. Such \begin{document}$$ S_p $$\end{document} regularity leads to the uniqueness of weak solutions.more » « less
-
Abstract Noise or fluctuations play an important role in the modeling and understanding of the behavior of various complex systems in nature. Fokker–Planck equations are powerful mathematical tools to study behavior of such systems subjected to fluctuations. In this paper we establish local well-posedness result of a new nonlinear Fokker–Planck equation. Such equations appear in the modeling of the grain boundary dynamics during microstructure evolution in the polycrystalline materials and obey special energy laws.more » « less
-
Abstract The electron VDF in the solar wind consists of a Maxwellian core, a suprathermal halo, a field-aligned component strahl, and an energetic superhalo that deviates from the equilibrium. Whistler wave turbulence is thought to resonantly scatter the observed electron velocity distribution. Wave–particle interactions that contribute to Whistler wave turbulence are introduced into a Fokker–Planck kinetic transport equation that describes the interaction between the suprathermal electrons and the Whistler waves. A recent numerical approach for solving the Fokker–Planck kinetic transport equation has been extended to include a full diffusion tensor. Application of the extended numerical approach to the transport of solar wind suprathermal electrons influenced by Whistler wave turbulence is presented. Comparison and analysis of the numerical results with observations and diagonal-only model results are made. The off-diagonal terms in the diffusion tensor act to depress effects caused by the diagonal terms. The role of the diffusion coefficient on the electron heat flux is discussed.more » « less
-
A class of nonlinear Fokker–Planck equations with nonlocal interactions may include many important cases, such as porous medium equations with external potentials and aggregation–diffusion models. The trajectory equation of the Fokker–Plank equation can be derived based on an energetic variational approach. A structure‐preserving numerical scheme that is mass conservative, energy stable, uniquely solvable, and positivity preserving at a theoretical level has also been designed in the previous work. Moreover, the numerical scheme is shown to satisfy the discrete energetic dissipation law and preserve steady states and has been observed to be second order accurate in space and first‐order accurate time in various numerical experiments. In this work, we give the rigorous convergence analysis for the highly nonlinear numerical scheme. A careful higher order asymptotic expansion is needed to handle the highly nonlinear nature of the trajectory equation. In addition, two step error estimates (a rough estimate and a refined estimate) are necessary in the convergence proof. Different from a standard error estimate, the rough estimate is performed to control the nonlinear term. A few numerical results are also presented to verify the optimal convergence order and the preservation of equilibria.more » « less
An official website of the United States government

