skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2055667

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. The recently developed average latitudinal displacement (ALD) methodology is applied to assess the waviness of the austral-winter subtropical and polar jets using three different reanalysis data sets. As in the wintertime Northern Hemisphere, both jets in the Southern Hemisphere have become systematically wavier over the time series and the waviness of each jet evolves quite independently of the other during most cold seasons. Also, like its Northern Hemisphere equivalent, the Southern Hemisphere polar jet exhibits no trend in speed (though it is notably slower), while its poleward shift is statistically significant. In contrast to its Northern Hemisphere counterpart, the austral subtropical jet has undergone both a systematic increase in speed and a statistically significant poleward migration. Composite differences between the waviest and least wavy seasons for each species suggest that the Southern Hemisphere's lower-stratospheric polar vortex is negatively impacted by unusually wavy tropopause-level jets of either species. These results are considered in the context of trends in the Southern Annular Mode as well as the findings of other related studies. 
    more » « less
  2. Previous research regarding the intraseasonal variability of the wintertime Pacific jet has employed empiri- cal orthogonal function (EOF)/principal component (PC) analysis to characterize two leading modes of variability: a zonal extension or retraction and a ;208 meridional shift of the jet exit region. These leading modes are intimately tied to the large-scale structure, sensible weather phenomena, and forecast skill in and around the vast North Pacific basin. However, variability within the wintertime Pacific jet and the relative importance of tropical and extratropical processes in driving such variability, is poorly understood. Here, a self-organizing maps (SOM) analysis is applied to 73 Northern Hemisphere cold seasons of 250-hPa zonal winds from the NCEP–NCAR reanalysis data to identify 12 characteristic physical jet states, some of which resemble the leading EOF Pacific jet patterns and combinations of them. Examination of teleconnection patterns such as El Nin ̃o–Southern Oscillation (ENSO) and the Madden–Julian oscillation (MJO) provide insight into the varying nature of the 12 SOM nodes at inter- and intraseasonal time scales. These relationships suggest that the hitherto more common EOF/PC analysis of jet variability obscures important subtleties of jet structure, revealed by the SOM analy- sis, which bear on the underlying physical processes associated with Pacific jet variability as well as the nature of its down- stream impacts. 
    more » « less
  3. Previous research regarding the intraseasonal variability of the wintertime Pacific jet has employed empiri- cal orthogonal function (EOF)/principal component (PC) analysis to characterize two leading modes of variability: a zonal extension or retraction and a ;208 meridional shift of the jet exit region. These leading modes are intimately tied to the large-scale structure, sensible weather phenomena, and forecast skill in and around the vast North Pacific basin. However, variability within the wintertime Pacific jet and the relative importance of tropical and extratropical processes in driving such variability, is poorly understood. Here, a self-organizing maps (SOM) analysis is applied to 73 Northern Hemisphere cold seasons of 250-hPa zonal winds from the NCEP–NCAR reanalysis data to identify 12 characteristic physical jet states, some of which resemble the leading EOF Pacific jet patterns and combinations of them. Examination of teleconnection patterns such as El Nin ̃o–Southern Oscillation (ENSO) and the Madden–Julian oscillation (MJO) provide insight into the varying nature of the 12 SOM nodes at inter- and intraseasonal time scales. These relationships suggest that the hitherto more common EOF/PC analysis of jet variability obscures important subtleties of jet structure, revealed by the SOM analy- sis, which bear on the underlying physical processes associated with Pacific jet variability as well as the nature of its down- stream impacts. 
    more » « less