Abstract The relationship of upper tropospheric jet variability to El Niño / Southern Oscillation (ENSO) in reanalysis datasets is analyzed for 1979–2018, revealing robust regional and seasonal variability. Tropical jets associated with monsoons and the Walker circulation are weaker and the zonal mean subtropical jet shifts equatorward in both hemispheres during El Niño, consistent with previous findings. Regional and seasonal variations are analyzed separately for subtropical and polar jets. The subtropical jet shifts poleward during El Niño over the NH eastern Pacific in DJF, and in some SH regions in MAMand SON. Subtropical jet altitudes increase during El Niño, with significant changes in the zonal mean in the NH and during summer/fall in the SH. Though zonal mean polar jet correlations with ENSO are rarely significant, robust regional/seasonal changes occur: The SH polar jet shifts equatorward during El Niño over Asia and the western Pacific in DJF, and poleward over the eastern Pacific in JJA and SON. Polar jets are weaker (stronger) during El Niño in the western (eastern) hemisphere, especially in the SH; conversely, subtropical jets are stronger (weaker) in the western (eastern) hemisphere during El Niño in winter and spring; these opposing changes, along with an anticorrelation between subtropical and polar jet windspeed, reinforce subtropical/polar jet strength differences during El Niño, and suggest ENSO-related covariability of the jets. ENSO-related jet latitude, altitude, and windspeed changes can reach 4(3)°, 0.6(0.3) km, and 6(3) ms −1 , respectively, for the subtropical (polar) jets.
more »
« less
Waviness of the Southern Hemisphere wintertime polar and subtropical jets
Abstract. The recently developed average latitudinal displacement (ALD) methodology is applied to assess the waviness of the austral-winter subtropical and polar jets using three different reanalysis data sets. As in the wintertime Northern Hemisphere, both jets in the Southern Hemisphere have become systematically wavier over the time series and the waviness of each jet evolves quite independently of the other during most cold seasons. Also, like its Northern Hemisphere equivalent, the Southern Hemisphere polar jet exhibits no trend in speed (though it is notably slower), while its poleward shift is statistically significant. In contrast to its Northern Hemisphere counterpart, the austral subtropical jet has undergone both a systematic increase in speed and a statistically significant poleward migration. Composite differences between the waviest and least wavy seasons for each species suggest that the Southern Hemisphere's lower-stratospheric polar vortex is negatively impacted by unusually wavy tropopause-level jets of either species. These results are considered in the context of trends in the Southern Annular Mode as well as the findings of other related studies.
more »
« less
- Award ID(s):
- 2055667
- PAR ID:
- 10530442
- Publisher / Repository:
- Copernicus Publications on behalf of the European Geosciences Union
- Date Published:
- Journal Name:
- Weather and Climate Dynamics
- Volume:
- 4
- Issue:
- 4
- ISSN:
- 2698-4016
- Page Range / eLocation ID:
- 875 to 886
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Atmospheric angular momentum (AAM) is used to study the variability of Earth’s atmospheric circulation during the past 45 years, a time of considerable climate change. Using global AAM, two interdecadal states are defined covering the periods 1977–98 (hereinafter P1) and 1999–2022 (P2). Global AAM decreased from P1 to P2 and was accompanied by weakened subtropical jet streams in both hemispheres, strong convection around the northern Maritime Continent, and a strengthened sea surface temperature (SST) gradient across the tropical Pacific Ocean. The period differences project onto 1) internal interdecadal Pacific variability (IPV), 2) a postulated transient ocean thermostat response to greenhouse gas and aerosol emissions, and 3) circulation anomalies related to the ozone hole. During 1977–2023, the first two processes are forcing the climate toward larger Pacific Ocean SST gradients and a poleward expansion of the Indo-Pacific warm pool (IPWP), especially into the Northern Hemisphere. The ozone hole produces its own distinct pattern of anomalies in the Southern Hemisphere that tend to become persistent in the early 1990s. The zonal and vertical mean AAM variations during P1 have frequent westerly wind anomalies between 40°N and 40°S with poleward propagation on interannual time scales. During P2, the circulation is dominated by subtropical easterly wind anomalies, poleward-shifted jets, and weaker propagation. Locally, the zonal mean anomalies manifest as midlatitude ridges that lead to continental droughts. Case studies illustrate the weakened subtropical jet streams of P2 and examine the factors behind a transition to La Niña in early 2020 that maintains the P2 pattern.more » « less
-
null (Ed.)Abstract The Southern Hemisphere summertime eddy-driven jet and storm tracks have shifted poleward over the recent few decades. In previous studies, explanations have mainly stressed the influence of external forcing in driving this trend. Here we examine the role of internal tropical SST variability in controlling the austral summer jet’s poleward migration, with a focus on interdecadal time scales. The role of external forcing and internal variability are isolated by using a hierarchy of Community Earth System Model version 1 (CESM1) simulations, including the pre-industrial control, large ensemble, and pacemaker runs. Model simulations suggest that in the early twenty-first century, both external forcing and internal tropical Pacific SST variability are important in driving a positive southern annular mode (SAM) phase and a poleward migration of the eddy-driven jet. Tropical Pacific SST variability, associated with the negative phase of the interdecadal Pacific oscillation (IPO), acts to shift the jet poleward over the southern Indian and southwestern Pacific Oceans and intensify the jet in the southeastern Pacific basin, while external forcing drives a significant poleward jet shift in the South Atlantic basin. In response to both external forcing and decadal Pacific SST variability, the transient eddy momentum flux convergence belt in the middle latitudes experiences a poleward migration due to the enhanced meridional temperature gradient, leading to a zonally symmetric southward migration of the eddy-driven jet. This mechanism distinguishes the influence of the IPO on the midlatitude circulation from the dynamical impact of ENSO, with the latter mainly promoting the subtropical wave-breaking critical latitude poleward and pushing the midlatitude jet to higher latitudes.more » « less
-
Abstract Midlatitude weather extremes such as blocking events and Rossby wave breaking are often related to large meridional shifts in the westerly jet stream. Numerous diagnostic methods have been developed to characterize these weather events, each emphasizing different yet interrelated aspects of circulation waviness, including identifying large-amplitude ridges or persistent anomalies in geopotential height. In this study, we introduce a new metric to quantify the circulation waviness in terms of effective time scale. This is based on the Rossby wave packet from the one-point correlation map of anomalous meridional wind, applicable to jet waviness involving multiple wavenumbers. Specifically, we estimate the intrinsic frequency of Rossby waves and decay time scale of wave amplitude in the reference frame moving at the local time mean zonal wind. The resulting effective time scale, derived from linear theory, serves as a proxy for the eddy mixing time scale in jet meandering. Remarkably, its spatial distribution roughly resembles that of circulation waviness in the Northern Hemisphere winter as depicted by local wave activity (LWA). In the high-latitude regions characterized by weak zonal winds, the long time scale in waviness aligns with large values in LWA. By contrast, short waviness time scales in subtropical jet regions correspond to the suppressed amplitude in waviness despite large values in eddy kinetic energy (EKE). Furthermore, the effective time scale in waviness largely captures the interannual variability of LWA in observations and its projected future changes in climate model simulations. Thus, this relation between the waviness time scale and zonal wind provides a physical mechanism for understanding how zonal wind changes impact regional weather patterns in a changing climate. Significance StatementThe purpose of this study is to better understand what controls weather extremes in midlatitude regions such as blocking events and Rossby wave breaking. We introduce a novel concept, the effective time scale of jet stream meandering, which sheds light on these phenomena. Through analyzing Rossby waves in the reference frame moving at the local time mean zonal wind, we derive a scaling relation between circulation waviness and eddy mixing time scale. Our findings reveal that this time scale closely mirrors the spatial distribution of circulation waviness in the Northern Hemisphere winter. Importantly, it captures interannual variability and climate change responses. These insights provide a physical basis for understanding how changes in zonal wind impact regional weather patterns in observations and climate models.more » « less
-
Abstract The Southern Annular Mode (SAM) is the leading mode of extratropical Southern Hemisphere climate variability, associated with changes in the strength and position of the polar jet around Antarctica. This variability in the polar jet drives large fluctuations in the Southern Hemisphere climate, from the lower stratosphere into the troposphere, and stretching from the midlatitudes across the Southern Ocean to Antarctica. Notably, the SAM index has displayed marked positive trends in the austral summer season (stronger and poleward shifted westerlies), associated with stratospheric ozone loss. Historical reconstructions demonstrate that these recent positive SAM index values are unprecedented in the last millennia, and fall outside the range of natural climate variability. Despite these advances in the understanding of the SAM behavior, several areas of active research are identified that highlight gaps in our present knowledge. This article is categorized under:Paleoclimates and Current Trends > Earth System Behaviormore » « less
An official website of the United States government

