skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2100157

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Ann-vertex graph is calledC-Ramseyif it has no clique or independent set of size$$C\log _2 n$$(i.e., if it has near-optimal Ramsey behavior). In this paper, we study edge statistics in Ramsey graphs, in particular obtaining very precise control of the distribution of the number of edges in a random vertex subset of aC-Ramsey graph. This brings together two ongoing lines of research: the study of ‘random-like’ properties of Ramsey graphs and the study of small-ball probability for low-degree polynomials of independent random variables. The proof proceeds via an ‘additive structure’ dichotomy on the degree sequence and involves a wide range of different tools from Fourier analysis, random matrix theory, the theory of Boolean functions, probabilistic combinatorics and low-rank approximation. In particular, a key ingredient is a new sharpened version of the quadratic Carbery–Wright theorem on small-ball probability for polynomials of Gaussians, which we believe is of independent interest. One of the consequences of our result is the resolution of an old conjecture of Erdős and McKay, for which Erdős reiterated in several of his open problem collections and for which he offered one of his notorious monetary prizes. 
    more » « less
  2. Abstract Let us fix a primepand a homogeneous system ofmlinear equations$$a_{j,1}x_1+\dots +a_{j,k}x_k=0$$ a j , 1 x 1 + + a j , k x k = 0 for$$j=1,\dots ,m$$ j = 1 , , m with coefficients$$a_{j,i}\in \mathbb {F}_p$$ a j , i F p . Suppose that$$k\ge 3m$$ k 3 m , that$$a_{j,1}+\dots +a_{j,k}=0$$ a j , 1 + + a j , k = 0 for$$j=1,\dots ,m$$ j = 1 , , m and that every$$m\times m$$ m × m minor of the$$m\times k$$ m × k matrix$$(a_{j,i})_{j,i}$$ ( a j , i ) j , i is non-singular. Then we prove that for any (large)n, any subset$$A\subseteq \mathbb {F}_p^n$$ A F p n of size$$|A|> C\cdot \Gamma ^n$$ | A | > C · Γ n contains a solution$$(x_1,\dots ,x_k)\in A^k$$ ( x 1 , , x k ) A k to the given system of equations such that the vectors$$x_1,\dots ,x_k\in A$$ x 1 , , x k A are all distinct. Here,Cand$$\Gamma $$ Γ are constants only depending onp,mandksuch that$$\Gamma Γ < p . The crucial point here is the condition for the vectors$$x_1,\dots ,x_k$$ x 1 , , x k in the solution$$(x_1,\dots ,x_k)\in A^k$$ ( x 1 , , x k ) A k to be distinct. If we relax this condition and only demand that$$x_1,\dots ,x_k$$ x 1 , , x k are not all equal, then the statement would follow easily from Tao’s slice rank polynomial method. However, handling the distinctness condition is much harder, and requires a new approach. While all previous combinatorial applications of the slice rank polynomial method have relied on the slice rank of diagonal tensors, we use a slice rank argument for a non-diagonal tensor in combination with combinatorial and probabilistic arguments. 
    more » « less
  3. List-decodability of Reed-Solomon codes has received a lot of attention, but the best-possible dependence between the parameters is still not well-understood. In this work, we focus on the case where the list-decoding radius is of the form r=1−ε for ε tending to zero. Our main result states that there exist Reed-Solomon codes with rate Ω(ε) which are (1−ε,O(1/ε)) -list-decodable, meaning that any Hamming ball of radius 1−ε contains at most O(1/ε) codewords. This trade-off between rate and list-decoding radius is best-possible for any code with list size less than exponential in the block length. By achieving this trade-off between rate and list-decoding radius we improve a recent result of Guo, Li, Shangguan, Tamo, and Wootters, and resolve the main motivating question of their work. Moreover, while their result requires the field to be exponentially large in the block length, we only need the field size to be polynomially large (and in fact, almost-linear suffices). We deduce our main result from a more general theorem, in which we prove good list-decodability properties of random puncturings of any given code with very large distance. 
    more » « less