Let denote the complete 3‐uniform hypergraph on vertices and the 3‐uniform hypergraph on vertices consisting of all edges incident to a given vertex. Whereas many hypergraph Ramsey numbers grow either at most polynomially or at least exponentially, we show that the off‐diagonal Ramsey number exhibits an unusual intermediate growth rate, namely,
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract for some positive constants and . The proof of these bounds brings in a novel Ramsey problem on grid graphs which may be of independent interest: what is the minimum such that any 2‐edge‐coloring of the Cartesian product contains either a red rectangle or a blue ? -
Abstract A family of sets is said to be an antichain if for all distinct , and it is said to be a distance‐ code if every pair of distinct elements of has Hamming distance at least . Here, we prove that if is both an antichain and a distance‐ code, then . This result, which is best‐possible up to the implied constant, is a purely combinatorial strengthening of a number of results in Littlewood–Offord theory; for example, our result gives a short combinatorial proof of Hálasz's theorem, while all previously known proofs of this result are Fourier‐analytic.
-
Abstract We elucidate the relationship between the threshold and the expectation‐threshold of a down‐set. Qualitatively, our main result demonstrates that there exist down‐sets with polynomial gaps between their thresholds and expectation‐thresholds; in particular, the logarithmic gap predictions of Kahn–Kalai and Talagrand (recently proved by Park–Pham and Frankston–Kahn–Narayanan–Park) about up‐sets do not apply to down‐sets. Quantitatively, we show that any collection of graphs on that covers the family of all triangle‐free graphs on satisfies the inequality for some universal , and this is essentially best‐possible.
-
Free, publicly-accessible full text available April 24, 2025
-
For positive integers 𝑛, 𝑟, 𝑠 with 𝑟 > 𝑠, the set-coloring Ramsey number 𝑅(𝑛; 𝑟, 𝑠) is the minimum 𝑁 such that if every edge of the complete graph 𝐾_𝑁 receives a set of 𝑠 colors from a palette of 𝑟 colors, then there is guaranteed to be a monochromatic clique on 𝑛 vertices, that is, a subset of 𝑛 vertices where all of the edges between them receive a common color. In particular, the case 𝑠 = 1 corresponds to the classical multicolor Ramsey number. We prove general upper and lower bounds on 𝑅(𝑛; 𝑟, 𝑠) which imply that 𝑅(𝑛; 𝑟, 𝑠) = 2^Θ(𝑛𝑟) if 𝑠/𝑟 is bounded away from 0 and 1. The upper bound extends an old result of Erdős and Szemerédi, who treated the case 𝑠 = 𝑟 − 1, while the lower bound exploits a connection to error-correcting codes. We also study the analogous problem for hypergraphs.more » « lessFree, publicly-accessible full text available April 15, 2025
-
Free, publicly-accessible full text available January 1, 2025