Let denote the complete 3‐uniform hypergraph on vertices and the 3‐uniform hypergraph on vertices consisting of all edges incident to a given vertex. Whereas many hypergraph Ramsey numbers grow either at most polynomially or at least exponentially, we show that the off‐diagonal Ramsey number exhibits an unusual intermediate growth rate, namely,
- PAR ID:
- 10495993
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Random Structures & Algorithms
- Volume:
- 63
- Issue:
- 3
- ISSN:
- 1042-9832
- Page Range / eLocation ID:
- 610 to 623
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract The hedgehog H t is a 3-uniform hypergraph on vertices $1, \ldots ,t + \left({\matrix{t \cr 2}}\right)$ such that, for any pair ( i , j ) with 1 ≤ i < j ≤ t , there exists a unique vertex k > t such that { i , j , k } is an edge. Conlon, Fox and Rödl proved that the two-colour Ramsey number of the hedgehog grows polynomially in the number of its vertices, while the four-colour Ramsey number grows exponentially in the square root of the number of vertices. They asked whether the two-colour Ramsey number of the hedgehog H t is nearly linear in the number of its vertices. We answer this question affirmatively, proving that r ( H t ) = O ( t 2 ln t ).more » « less
-
We show that there is an absolute constant c > 0 c>0 such that the following holds. For every n > 1 n > 1 , there is a 5-uniform hypergraph on at least 2 2 c n 1 / 4 2^{2^{cn^{1/4}}} vertices with independence number at most n n , where every set of 6 vertices induces at most 3 edges. The double exponential growth rate for the number of vertices is sharp. By applying a stepping-up lemma established by the first two authors, analogous sharp results are proved for k k -uniform hypergraphs. This answers the penultimate open case of a conjecture in Ramsey theory posed by Erdős and Hajnal in 1972.more » « less
-
Motivated by the Erdős–Szekeres convex polytope conjecture in $\mathbb{R}^{d}$ , we initiate the study of the following induced Ramsey problem for hypergraphs. Given integers $n>k\geqslant 5$ , what is the minimum integer $g_{k}(n)$ such that any $k$ -uniform hypergraph on $g_{k}(n)$ vertices with the property that any set of $k+1$ vertices induces 0, 2, or 4 edges, contains an independent set of size $n$ . Our main result shows that $g_{k}(n)>2^{cn^{k-4}}$ , where $c=c(k)$ .more » « less
-
Abstract The list Ramsey number , recently introduced by Alon, Bucić, Kalvari, Kuperwasser, and Szabó, is a list‐coloring variant of the classical Ramsey number. They showed that if is a fixed ‐uniform hypergraph that is not ‐partite and the number of colors goes to infinity, . We prove that if and only if is not ‐partite.
-
For an $r$-uniform hypergraph $H$, let $\nu^{(m)}(H)$ denote the maximum size of a set $M$ of edges in $H$ such that every two edges in $M$ intersect in less than $m$ vertices, and let $\tau^{(m)}(H)$ denote the minimum size of a collection $C$ of $m$-sets of vertices such that every edge in $H$ contains an element of $C$. The fractional analogues of these parameters are denoted by $\nu^{*(m)}(H)$ and $\tau^{*(m)}(H)$, respectively. Generalizing a famous conjecture of Tuza on covering triangles in a graph, Aharoni and Zerbib conjectured that for every $r$-uniform hypergraph $H$, $\tau^{(r-1)}(H)/\nu^{(r-1)}(H) \leq \lceil{\frac{r+1}{2}}\rceil$. In this paper we prove bounds on the ratio between the parameters $\tau^{(m)}$ and $\nu^{(m)}$, and their fractional analogues. Our main result is that, for every $r$-uniform hypergraph~$H$,\[ \tau^{*(r-1)}(H)/\nu^{(r-1)}(H) \le \begin{cases} \frac{3}{4}r - \frac{r}{4(r+1)} &\text{for }r\text{ even,}\\\frac{3}{4}r - \frac{r}{4(r+2)} &\text{for }r\text{ odd.} \\\end{cases} \]This improves the known bound of $r-1$.We also prove that, for every $r$-uniform hypergraph $H$, $\tau^{(m)}(H)/\nu^{*(m)}(H) \le \operatorname{ex}_m(r, m+1)$, where the Turán number $\operatorname{ex}_r(n, k)$ is the maximum number of edges in an $r$-uniform hypergraph on $n$ vertices that does not contain a copy of the complete $r$-uniform hypergraph on $k$ vertices. Finally, we prove further bounds in the special cases $(r,m)=(4,2)$ and $(r,m)=(4,3)$.more » « less