skip to main content


Title: Hypergraph Ramsey numbers of cliques versus stars
Abstract

Let denote the complete 3‐uniform hypergraph on vertices and the 3‐uniform hypergraph on vertices consisting of all edges incident to a given vertex. Whereas many hypergraph Ramsey numbers grow either at most polynomially or at least exponentially, we show that the off‐diagonal Ramsey number exhibits an unusual intermediate growth rate, namely,for some positive constants and . The proof of these bounds brings in a novel Ramsey problem on grid graphs which may be of independent interest: what is the minimum such that any 2‐edge‐coloring of the Cartesian product contains either a red rectangle or a blue ?

 
more » « less
Award ID(s):
2153576 2154129 2103154 1800746
PAR ID:
10495993
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Random Structures & Algorithms
Volume:
63
Issue:
3
ISSN:
1042-9832
Page Range / eLocation ID:
610 to 623
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The hedgehog H t is a 3-uniform hypergraph on vertices $1, \ldots ,t + \left({\matrix{t \cr 2}}\right)$ such that, for any pair ( i , j ) with 1 ≤ i < j ≤ t , there exists a unique vertex k > t such that { i , j , k } is an edge. Conlon, Fox and Rödl proved that the two-colour Ramsey number of the hedgehog grows polynomially in the number of its vertices, while the four-colour Ramsey number grows exponentially in the square root of the number of vertices. They asked whether the two-colour Ramsey number of the hedgehog H t is nearly linear in the number of its vertices. We answer this question affirmatively, proving that r ( H t ) = O ( t 2 ln t ). 
    more » « less
  2. We show that there is an absolute constant c > 0 c>0 such that the following holds. For every n > 1 n > 1 , there is a 5-uniform hypergraph on at least 2 2 c n 1 / 4 2^{2^{cn^{1/4}}} vertices with independence number at most n n , where every set of 6 vertices induces at most 3 edges. The double exponential growth rate for the number of vertices is sharp. By applying a stepping-up lemma established by the first two authors, analogous sharp results are proved for k k -uniform hypergraphs. This answers the penultimate open case of a conjecture in Ramsey theory posed by Erdős and Hajnal in 1972. 
    more » « less
  3. Motivated by the Erdős–Szekeres convex polytope conjecture in $\mathbb{R}^{d}$ , we initiate the study of the following induced Ramsey problem for hypergraphs. Given integers $n>k\geqslant 5$ , what is the minimum integer $g_{k}(n)$ such that any $k$ -uniform hypergraph on $g_{k}(n)$ vertices with the property that any set of $k+1$ vertices induces 0, 2, or 4 edges, contains an independent set of size $n$ . Our main result shows that $g_{k}(n)>2^{cn^{k-4}}$ , where $c=c(k)$ . 
    more » « less
  4. Abstract

    The list Ramsey number , recently introduced by Alon, Bucić, Kalvari, Kuperwasser, and Szabó, is a list‐coloring variant of the classical Ramsey number. They showed that if is a fixed ‐uniform hypergraph that is not ‐partite and the number of colors goes to infinity, . We prove that if and only if is not ‐partite.

     
    more » « less
  5. For an $r$-uniform hypergraph $H$, let $\nu^{(m)}(H)$ denote the maximum size of a set $M$ of edges in $H$ such that every two edges in $M$ intersect in less than $m$ vertices, and let $\tau^{(m)}(H)$ denote the minimum size of a collection $C$ of $m$-sets of vertices such that every edge in $H$ contains an element of $C$. The fractional analogues of these parameters are denoted by $\nu^{*(m)}(H)$ and $\tau^{*(m)}(H)$, respectively. Generalizing a famous conjecture of Tuza on covering triangles in a graph, Aharoni and Zerbib conjectured that for every $r$-uniform hypergraph $H$, $\tau^{(r-1)}(H)/\nu^{(r-1)}(H) \leq \lceil{\frac{r+1}{2}}\rceil$. In this paper we prove bounds on the ratio between the parameters $\tau^{(m)}$ and $\nu^{(m)}$, and their fractional analogues. Our main result is that, for every $r$-uniform hypergraph~$H$,\[ \tau^{*(r-1)}(H)/\nu^{(r-1)}(H) \le \begin{cases} \frac{3}{4}r - \frac{r}{4(r+1)} &\text{for }r\text{ even,}\\\frac{3}{4}r - \frac{r}{4(r+2)} &\text{for }r\text{ odd.} \\\end{cases} \]This improves the known bound of $r-1$.We also prove that, for every $r$-uniform hypergraph $H$, $\tau^{(m)}(H)/\nu^{*(m)}(H) \le \operatorname{ex}_m(r, m+1)$, where the Turán number $\operatorname{ex}_r(n, k)$ is the maximum number of edges in an $r$-uniform hypergraph on $n$ vertices that does not contain a copy of the complete $r$-uniform hypergraph on $k$ vertices. Finally, we prove further bounds in the special cases $(r,m)=(4,2)$ and $(r,m)=(4,3)$. 
    more » « less