Existing star-forming vs. active galactic nucleus (AGN) classification schemes using optical emission-line diagnostics mostly fail for low-metallicity and/or highly star-forming galaxies, missing AGN in typical
Low luminosity active galactic nuclei (LLAGN) probe accretion physics in the low Eddington regime can provide additional clues about galaxy evolution. AGN variability is ubiquitous and thus provides a reliable tool for finding AGN. We analyze the All-Sky Automated Survey for SuperNovae light curves of 1218 galaxies with
- Publication Date:
- NSF-PAR ID:
- 10366712
- Journal Name:
- The Astrophysical Journal
- Volume:
- 930
- Issue:
- 2
- Page Range or eLocation-ID:
- Article No. 110
- ISSN:
- 0004-637X
- Publisher:
- DOI PREFIX: 10.3847
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract z ∼ 0 dwarfs. To recover AGN in dwarfs with strong emission lines (SELs), we present a classification scheme optimizing the use of existing optical diagnostics. We use Sloan Digital Sky Survey emission-line catalogs overlapping the volume- and mass-limited REsolved Spectroscopy Of a Local VolumE (RESOLVE) and Environmental COntex (ECO) surveys to determine the AGN percentage in SEL dwarfs. Our photoionization grids show that the [Oiii ]/Hβ versus [Sii ]/Hα diagram (Sii plot) and [Oiii ]/Hβ versus [Oi ]/Hα diagram (Oi plot) are less metallicity sensitive and more successful in identifying dwarf AGN than the popular [Oiii ]/Hβ versus [Nii ]/Hα diagnostic (Nii plot or “BPT diagram”). We identify a new category of “star-forming AGN” (SF-AGN) classified as star-forming by the Nii plot but as AGN by the Sii and/or Oi plots. Including SF-AGN, we find thez ∼ 0 AGN percentage in dwarfs with SELs to be ∼3%–16%, far exceeding most previous optical estimates (∼1%). The large range in our dwarf AGN percentage reflects differences in spectral fitting methodologies between catalogs. The highly complete nature of RESOLVE and ECO allows us to normalize strong emission-line galaxy statistics to the full galaxy population, reducing the dwarfmore » -
Abstract We report the discoveries of a nuclear ring of diameter 10″ (∼1.5 kpc) and a potential low-luminosity active galactic nucleus (LLAGN) in the radio continuum emission map of the edge-on barred spiral galaxy NGC 5792. These discoveries are based on the Continuum Halos in Nearby Galaxies—an Expanded Very Large Array (VLA) Survey, as well as subsequent VLA observations of subarcsecond resolution. Using a mixture of H
α and 24μ m calibrations, we disentangle the thermal and nonthermal radio emission of the nuclear region and derive a star formation rate (SFR) of ∼0.4M ☉yr−1. We find that the nuclear ring is dominated by nonthermal synchrotron emission. The synchrotron-based SFR is about three times the mixture-based SFR. This result indicates that the nuclear ring underwent more intense star-forming activity in the past, and now its star formation is in the low state. The subarcsecond VLA images resolve six individual knots on the nuclear ring. The equipartition magnetic field strengthB eqof the knots varies from 77 to 88μ G. The radio ring surrounds a point-like faint radio core ofS 6 GHz= (16 ± 4)μ Jy with polarized lobes at the center of NGC 5792, which suggests an LLAGN with an Eddington ratio of ∼10−5. This radio nuclear ring is reminiscentmore » -
Abstract Active galactic nuclei (AGN) can vary significantly in their rest-frame optical/UV continuum emission, and with strong associated changes in broad line emission, on much shorter timescales than predicted by standard models of accretion disks around supermassive black holes. Most such
changing-look orchanging-state AGN—and at higher luminosities, changing-look quasars (CLQs)—have been found via spectroscopic follow-up of known quasars showing strong photometric variability. The Time Domain Spectroscopic Survey of the Sloan Digital Sky Survey IV (SDSS-IV) includes repeat spectroscopy of large numbers of previously known quasars, many selected irrespective of photometric variability, and with spectral epochs separated by months to decades. Our visual examination of these repeat spectra for strong broad line variability yielded 61 newly discovered CLQ candidates. We quantitatively compare spectral epochs to measure changes in continuum and Hβ broad line emission, finding 19 CLQs, of which 15 are newly recognized. The parent sample includes only broad line quasars, so our study tends to find objects that have dimmed, i.e., turn-off CLQs. However, we nevertheless find four turn-on CLQs that meet our criteria, albeit with broad lines in both dim and bright states. We study the response of Hβ and Mgii emission lines to continuum changes. The Eddington ratios of CLQs are low, and/or theirmore » -
We present a multiline survey of the interstellar medium (ISM) in two z > 6 quasar host galaxies, PJ231−20 ( z = 6.59) and PJ308−21 ( z = 6.23), and their two companion galaxies. Observations were carried out using the Atacama Large (sub-)Millimeter Array (ALMA). We targeted 11 transitions including atomic fine-structure lines (FSLs) and molecular lines: [NII] 205 μm , [CI] 369 μm , CO ( J up = 7, 10, 15, 16), H 2 O 3 12 − 2 21 , 3 21 − 3 12 , 3 03 − 2 12 , and the OH 163 μm doublet. The underlying far-infrared (FIR) continuum samples the Rayleigh-Jeans tail of the respective dust emission. By combining this information with our earlier ALMA [CII] 158 μm observations, we explored the effects of star formation and black hole feedback on the ISM of the galaxies using the CLOUDY radiative transfer models. We estimated dust masses, spectral indexes, IR luminosities, and star-formation rates from the FIR continuum. The analysis of the FSLs indicates that the [CII] 158 μm and [CI] 369 μm emission arises predominantly from the neutral medium in photodissociation regions (PDRs). We find that line deficits agree with those of local luminous IR galaxies. The CO spectral line energy distributions (SLEDs) reveal significant high- J COmore »
-
Abstract We investigate spatially resolved emission-line ratios in a sample of 219 galaxies (0.6 <
z < 1.3) detected using the G102 grism on the Hubble Space Telescope Wide Field Camera 3 taken as part of the CANDELS Lyα Emission at Reionization survey to measure ionization profiles and search for low-luminosity active galactic nuclei (AGN). We analyze [Oiii ] and Hβ emission-line maps, enabling us to spatially resolve the [Oiii ]/Hβ emission-line ratio across the galaxies in the sample. We compare the [Oiii ]/Hβ ratio in galaxy centers and outer annular regions to measure ionization differences and investigate the potential of sources with nuclear ionization to host AGN. We investigate some of the individual galaxies that are candidates to host strong nuclear ionization and find that they often have low stellar mass and are undetected in X-rays, as expected for low-luminosity AGN in low-mass galaxies. We do not find evidence for a significant population of off-nuclear AGN or other clumps of off-nuclear ionization. We model the observed distribution of [Oiii ]/Hβ spatial profiles and find that most galaxies are consistent with a small or zero difference between their nuclear and off-nuclear line ratios, but 6%–16% of galaxies in the sample are likely to host nuclear [Oiii ]/Hβ that is ∼0.5 dex higher thanmore »