We investigate the transverse energy-energy correlator (TEEC) event-shape observable for back-to-back and production in both and collisions. Our study incorporates nuclear modifications into the transverse-momentum dependent (TMD) factorization framework, with resummation up to next-to-leading logarithmic accuracy, for TEEC as a function of the variable , where is the azimuthal angle between the vector boson and the final hadron. We analyze the nuclear modification factor in collisions at Relativistic Heavy Ion Collider and collisions at the Large Hadron Collider. Our results demonstrate that the TEEC observable is a sensitive probe for nuclear modifications in TMD physics. Specifically, the changes in the -distribution shape provide insights into transverse momentum broadening effects in large nuclei, while measurements at different rapidities allow us to explore nuclear modifications in the collinear component of the TMD parton distribution functions in nuclei.
more »
« less
This content will become publicly available on December 1, 2025
Imaging the initial condition of heavy-ion collisions and nuclear structure across the nuclide chart
Abstract High-energy nuclear collisions encompass three key stages: the structure of the colliding nuclei, informed by low-energy nuclear physics, theinitial condition, leading to the formation of quark–gluon plasma (QGP), and the hydrodynamic expansion and hadronization of the QGP, leading to final-state hadron distributions that are observed experimentally. Recent advances in both experimental and theoretical methods have ushered in a precision era of heavy-ion collisions, enabling an increasingly accurate understanding of these stages. However, most approaches involve simultaneously determining both QGP properties and initial conditions from a single collision system, creating complexity due to the coupled contributions of these stages to the final-state observables. To avoid this, we propose leveraging established knowledge of low-energy nuclear structures and hydrodynamic observables to independently constrain the QGP’s initial condition. By conducting comparative studies of collisions involving isobar-like nuclei—species with similar mass numbers but different ground-state geometries—we can disentangle the initial condition’s impacts from the QGP properties. This approach not only refines our understanding of the initial stages of the collisions but also turns high-energy nuclear experiments into a precision tool for imaging nuclear structures, offering insights that complement traditional low-energy approaches. Opportunities for carrying out such comparative experiments at the Large Hadron Collider and other facilities could significantly advance both high-energy and low-energy nuclear physics. Additionally, this approach has implications for the future electron-ion collider. While the possibilities are extensive, we focus on selected proposals that could benefit both the high-energy and low-energy nuclear physics communities. Originally prepared as input for the long-range plan of U.S. nuclear physics, this white paper reflects the status as of September 2022, with a brief update on developments since then.
more »
« less
- Award ID(s):
- 2103680
- PAR ID:
- 10637151
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Nuclear Science and Technology
- Date Published:
- Journal Name:
- Nuclear Science and Techniques
- Volume:
- 35
- Issue:
- 12
- ISSN:
- 1001-8042
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Bayesian inference analysis of jet quenching using inclusive jet and hadron suppression measurementsThe Collaboration reports a new determination of the jet transport parameter in the quark-gluon plasma (QGP) using Bayesian inference, incorporating all available inclusive hadron and jet yield suppression data measured in heavy-ion collisions at the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC). This multi-observable analysis extends the previously published Bayesian inference determination of , which was based solely on a selection of inclusive hadron suppression data. is a modular framework incorporating detailed dynamical models of QGP formation and evolution, and jet propagation and interaction in the QGP. Virtuality-dependent partonic energy loss in the QGP is modeled as a thermalized weakly coupled plasma, with parameters determined from Bayesian calibration using soft-sector observables. This Bayesian calibration of utilizes active learning, a machine-learning approach, for efficient exploitation of computing resources. The experimental data included in this analysis span a broad range in collision energy and centrality, and in transverse momentum. In order to explore the systematic dependence of the extracted parameter posterior distributions, several different calibrations are reported, based on combined jet and hadron data; on jet or hadron data separately; and on restricted kinematic or centrality ranges of the jet and hadron data. Tension is observed in comparison of these variations, providing new insights into the physics of jet transport in the QGP and its theoretical formulation. Published by the American Physical Society2025more » « less
-
We provide an update on our semi-classical transport approach for quarkonium production in high-energy heavy-ion collisions, focusing on J/ψ and ψ(2S) mesons in 5.02 TeV Pb-Pb collisions at the Large Hadron Collider (LHC) at both forward and mid-rapidity. In particular, we employ the most recent charm-production cross sections reported in pp collisions, which are pivotal for the magnitude of the regeneration contribution, and their modifications due to cold-nuclear-matter (CNM) effects. Multi-differential observables are calculated in terms of nuclear modification factors as a function of centrality, transverse momentum, and rapidity, including the contributions from feeddown from bottom hadron decays. For our predictions for ψ(2S) production, the mechanism of sequential regeneration relative to the more strongly bound J/ψ meson plays an important role in interpreting recent ALICE data.more » « less
-
The electric conductivity, , is a fundamental transport coefficient of QCD matter that can be related to the zero-energy limit of the electromagnetic (EM) spectral function at vanishing three-momentum in the medium. The EM spectral function is also the central quantity to describe the thermal emission rates and pertinent spectra of photon and dilepton radiation in heavy-ion collisions. Employing a model for dilepton rates that combines hadronic many-body theory with nonperturbative QGP emission constrained by lattice QCD which describes existing dilepton measurements in heavy-ion collisions, I investigate the sensitivity of low-mass dilepton spectra in Pb-Pb collisions at the CERN Large Hadron Collider (LHC) to . In particular, I separately evaluate the contributions from QGP and hadronic emission, and identify signatures that can help to extract from high-precision experimental data expected to be attainable with future detector systems at the LHC. Published by the American Physical Society2024more » « less
-
Abstract The striking resemblance of high multiplicity proton-proton (pp) collisions at the LHC to heavy ion collisions challenges our conventional wisdom on the formation of the quark-gluon plasma (QGP). A consistent explanation of the collectivity phenomena in pp will help us to understand the mechanism that leads to the QGP-like signals in small systems. In this study, we introduce a transport model approach connecting the initial conditions provided by PYTHIA8 with subsequent AMPT rescatterings to study the collective behavior in high energy pp collisions. The multiplicity dependence of light hadron productions from this model is in reasonable agreement with the pp$$\sqrt{s}=13$$ TeV experimental data. It is found in the comparisons that both the partonic and hadronic final state interactions are important for the generation of the radial flow feature of the pp transverse momentum spectra. The study also shows that the long range two particle azimuthal correlation in high multiplicity pp events is sensitive to the proton sub-nucleon spatial fluctuations.more » « less
An official website of the United States government
