Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Racial segregation has long been a problem in communities across the country. One approach to help understand such an important issue is to attempt to describe it quantitatively. Many metrics have been developed, all with various strengths and weaknesses, but none fully capture the nuances of this complicated issue. This work provides an overview of four of the mathematical approaches that have been developed to study segregation, explains how they function using small examples, and compares and contrasts their effectiveness in various situations. We then focus on segregation in Los Angeles (LA) County, including a detailed exploration of the most recent score proposed by authors Sousa and Nicosia, which conducts a random walk and outputs the number of steps it takes to reach all racial classes in the system. While we found there is a difference between the average step lengths of LA County vs. an unbiased null model, attempts to standardize outputs erases crucial data, and compressing this issue into one score is not representative of its complexity. This suggests that future exploration should attempt to study segregation more comprehensively rather than distilling an incredibly complicated and important issue into a single statistic. More work is needed to quantitatively represent the complexities of racial segregation in an effective matter.more » « less
-
We prove that a polynomial fraction of the set of $$k$$-component forests in the $$m \times n$$ grid graph have equal numbers of vertices in each component, for any constant $$k$$. This resolves a conjecture of Charikar, Liu, Liu, and Vuong, and establishes the first provably polynomial-time algorithm for (exactly or approximately) sampling balanced grid graph partitions according to the spanning tree distribution, which weights each $$k$$-partition according to the product, across its $$k$$ pieces, of the number of spanning trees of each piece. Our result follows from a careful analysis of the probability a uniformly random spanning tree of the grid can be cut into balanced pieces. Beyond grids, we show that for a broad family of lattice-like graphs, we achieve balance up to any multiplicative $$(1 \pm \varepsilon)$$ constant with constant probability. More generally, we show that, with constant probability, components derived from uniform spanning trees can approximate any given partition of a planar region specified by Jordan curves. This implies polynomial-time algorithms for sampling approximately balanced tree-weighted partitions for lattice-like graphs. Our results have applications to understanding political districtings, where there is an underlying graph of indivisible geographic units that must be partitioned into $$k$$ population-balanced connected subgraphs. In this setting, tree-weighted partitions have interesting geometric properties, and this has stimulated significant effort to develop methods to sample them.more » « less
-
In the United States, regions (such as states or counties) are frequently divided into districts for the purpose of electing representatives. How the districts are drawn can have a profound effect on who is elected, and drawing the districts to give an advantage to a certain group is known as gerrymandering. It can be surprisingly difficult to detect when gerrymandering is occurring, but one algorithmic method is to compare a current districting plan to a large number of randomly sampled plans to see whether it is an outlier. Recombination Markov chains are often used to do this random sampling: randomly choose two districts, consider their union, and split this union up in a new way. This approach works well in practice and has been widely used, including in litigation, but the theory behind it remains underdeveloped. For example, it is not known if recombination Markov chains are irreducible, that is, if recombination moves suffice to move from any districting plan to any other. Irreducibility of recombination Markov chains can be formulated as a graph problem: for a planar graph G, is the space of all partitions of G into k connected subgraphs (k districts) connected by recombination moves? While the answer is yes when districts can be as small as one vertex, this is not realistic in real-world settings where districts must have approximately balanced populations. Here we fix district sizes to be k_1 +/- 1 vertices, k_2 +/- 1 vertices, ... for fixed k_1, k_2, ..., a more realistic setting. We prove for arbitrarily large triangular regions in the triangular lattice, when there are three simply connected districts, recombination Markov chains are irreducible. This is the first proof of irreducibility under tight district size constraints for recombination Markov chains beyond small or trivial examples. The triangular lattice is the most natural setting in which to first consider such a question, as graphs representing states/regions are frequently triangulated. The proof uses a sweep-line argument, and there is hope it will generalize to more districts, triangulations satisfying mild additional conditions, and other redistricting Markov chains.more » « less
-
We give an efficient perfect sampling algorithm for weighted, connected induced subgraphs (orgraphlets) of rooted, bounded degree graphs. Our algorithm utilizes a vertex-percolation process with a carefully chosen rejection filter and works under a percolation subcriticality condition. We show that this condition is optimal in the sense that the task of (approximately) sampling weighted rooted graphlets becomes impossible in finite expected time for infinite graphs and intractable for finite graphs when the condition does not hold. We apply our sampling algorithm as a subroutine to give near linear-time perfect sampling algorithms for polymer models and weighted non-rooted graphlets in finite graphs, two widely studied yet very different problems. This new perfect sampling algorithm for polymer models gives improved sampling algorithms for spin systems at low temperatures on expander graphs and unbalanced bipartite graphs, among other applications.more » « less
-
Berry, Jonathan; Shmoys, David; Cowen, Lenore; Naumann, Uwe (Ed.)In the United States, regions (such as states or counties) are frequently divided into districts for the purpose of electing representatives. How the districts are drawn can have a profound effect on who's elected, and drawing the districts to give an advantage to a certain group is known as gerrymandering. It can be surprisingly difficult to detect when gerrymandering is occurring, but one algorithmic method is to compare a current districting plan to a large number of randomly sampled plans to see whether it is an outlier. Recombination Markov chains are often used to do this random sampling: randomly choose two districts, consider their union, and split this union up in a new way. This approach works well in practice and has been widely used, including in litigation, but the theory behind it remains underdeveloped. For example, it's not known if recombination Markov chains are irreducible, that is, if recombination moves suffice to move from any districting plan to any other. Irreducibility of recombination Markov chains can be formulated as a graph problem: for a planar graph G, is the space of all partitions of G into κ connected subgraphs (κ districts) connected by recombination moves? While the answer is yes when districts can be as small as one vertex, this is not realistic in real-world settings where districts must have approximately balanced populations. Here we fix district sizes to be κ1 ± 1 vertices, κ2 ± 1 vertices,… for fixed κ1, κ2,…, a more realistic setting. We prove for arbitrarily large triangular regions in the triangular lattice, when there are three simply connected districts, recombination Markov chains are irreducible. This is the first proof of irreducibility under tight district size constraints for recombination Markov chains beyond small or trivial examples. The triangular lattice is the most natural setting in which to first consider such a question, as graphs representing states/regions are frequently triangulated. The proof uses a sweep-line argument, and there is hope it will generalize to more districts, triangulations satisfying mild additional conditions, and other redistricting Markov chains.more » « less
-
Chakrabarti, Amit; Swamy, Chaitanya (Ed.)We give an efficient perfect sampling algorithm for weighted, connected induced subgraphs (or graphlets) of rooted, bounded degree graphs. Our algorithm utilizes a vertex-percolation process with a carefully chosen rejection filter and works under a percolation subcriticality condition. We show that this condition is optimal in the sense that the task of (approximately) sampling weighted rooted graphlets becomes impossible in finite expected time for infinite graphs and intractable for finite graphs when the condition does not hold. We apply our sampling algorithm as a subroutine to give near linear-time perfect sampling algorithms for polymer models and weighted non-rooted graphlets in finite graphs, two widely studied yet very different problems. This new perfect sampling algorithm for polymer models gives improved sampling algorithms for spin systems at low temperatures on expander graphs and unbalanced bipartite graphs, among other applications.more » « less