skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2104986

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Models for slow flow of dense granular materials often treat the medium as incompressible, thereby neglecting the role of Reynolds dilatancy. However, recent particle simulations have demonstrated the presence of a significant coupling between the volume fraction and velocity fields. The model of Dsouza & Nott (J. Fluid Mech., vol. 888, 2020, R3) incorporates dilatancy and captures the coupling, but it has thus far lacked experimental validation. In this paper, we provide the first experimental demonstration of dilatancy and its coupling to the kinematics in a two-dimensional cylindrical Couette cell. We find a shear layer near the inner cylinder within which there is significant dilation. Within the shear layer, the azimuthal velocity decays roughly exponentially and the volume fraction rises with radial distance from the inner cylinder. The predictions of the model of Dsouza & Nott (2020) are in good agreement with the experimental data for a variety of roughness features of the outer cylinder. Moreover, by comparing the steady states resulting from different initial volume fraction profiles (but having the same average), we show the inter-dependence of the velocity and volume fraction fields, as predicted by the model. Our results establish the importance of shear dilatancy even in systems of constant volume. 
    more » « less
    Free, publicly-accessible full text available January 25, 2026
  2. Earth's surface materials constitute the basis for life and natural resources. Most of these materials can be catergorized as soft matter, yet a general physical understanding of the ground beneath our feet is still lacking. Here we provide some perspectives. 
    more » « less
  3. Abstract The surfaces of many planetary bodies, including asteroids and small moons, are covered with dust to pebble-sized regolith held weakly to the surface by gravity and contact forces. Understanding the reaction of regolith to an external perturbation will allow for instruments, including sensors and anchoring mechanisms for use on such surfaces, to implement optimized design principles. We analyze the behavior of a flexible probe inserted into loose regolith simulant as a function of probe speed and ambient gravitational acceleration to explore the relevant dynamics. The EMPANADA experiment (Ejecta-Minimizing Protocols for Applications Needing Anchoring or Digging on Asteroids) flew on several parabolic flights. It employs a classic granular physics technique, photoelasticity, to quantify the dynamics of a flexible probe during its insertion into a system of bi-disperse, centimeter-sized model grains. We identify the force chain structure throughout the system during probe insertion at a variety of speeds and for four different levels of gravity: terrestrial, Martian, lunar, and microgravity. We identify discrete, stick-slip failure events that increase in frequency as a function of the gravitational acceleration. In microgravity environments, stick-slip behaviors are negligible, and we find that faster probe insertion can suppress stick-slip behaviors where they are present. We conclude that the mechanical response of regolith on rubble-pile asteroids is likely quite distinct from that found on larger planetary objects, and scaling terrestrial experiments to microgravity conditions may not capture the full physical dynamics. 
    more » « less