skip to main content


This content will become publicly available on July 31, 2025

Title: Soft matter physics of the ground beneath our feet

Earth's surface materials constitute the basis for life and natural resources. Most of these materials can be catergorized as soft matter, yet a general physical understanding of the ground beneath our feet is still lacking. Here we provide some perspectives.

 
more » « less
Award ID(s):
2025795 1946434 2104986 1854977 2118912
PAR ID:
10530291
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; « less
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Soft Matter
Volume:
20
Issue:
30
ISSN:
1744-683X
Page Range / eLocation ID:
5859 to 5888
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A series of Co–P materials with varying P : Co ratio from 0 to 4 supported on SBA-15 were evaluated for ethane dehydrogenation (EDH) performance. In comparison to monometallic Co, the Co–P materials have improved ethylene selectivity from 41% for Co to 88–90% for Co–P, which was attributed to the segregation of Co atoms and the formation of partial positive Co δ + sites in the Co–P materials due to charge transfer. Among the Co–P materials studied, an optimum in stability was observed in those containing a P : Co ratio in the range 1 to 2. Below this range, limited P is available to adequately separate Co atoms. Above this range, the excess P promotes coke formation through possible acid catalyzed pathways. The stability of two of the Co–P materials containing the Co 2 P and CoP phase, respectively, were further tested for EDH at 700 °C. Under these conditions, the ethylene selectivity was 98%, and both materials remained active with little to no deactivation for over 4 h. In comparison to a Pt–Sn reference, both Co–P materials showed vastly improved stability. Additionally, both Co–P materials showed no signs of sintering after EDH at 700 °C and maintained their respective Co 2 P and CoP phases. These results demonstrate the catalytic improvement with P incorporation and highlights the high stability of Co–P, and possibly other metal phosphides, as high temperature EDH catalysts. 
    more » « less
  2. Abstract

    In alignment with the Materials Genome Initiative and as the product of a workshop sponsored by the US National Science Foundation, we define a vision for materials laboratories of the future in alloys, amorphous materials, and composite materials; chart a roadmap for realizing this vision; identify technical bottlenecks and barriers to access; and propose pathways to equitable and democratic access to integrated toolsets in a manner that addresses urgent societal needs, accelerates technological innovation, and enhances manufacturing competitiveness. Spanning three important materials classes, this article summarizes the areas of alignment and unifying themes, distinctive needs of different materials research communities, key science drivers that cannot be accomplished within the capabilities of current materials laboratories, and open questions that need further community input. Here, we provide a broader context for the workshop, synopsize the salient findings, outline a shared vision for democratizing access and accelerating materials discovery, highlight some case studies across the three different materials classes, and identify significant issues that need further discussion.

    Graphical abstract

     
    more » « less
  3. Lignin is a promising precursor to produce graphene materials due to its high carbon and aromatic contents. Upgrading lignin into graphene materials has gained significant interests as it offers a cost‐effective and sustainable route to produce high‐performance carbon materials. This review provides a comprehensive overview of the state‐of‐the‐art technologies on lignin to graphene materials with a focus on thermal catalytic and photothermal upgrading. The applications of lignin‐derived graphene materials and the perspectives for mass production of such graphene materials are also discussed.

     
    more » « less
  4. Abstract

    Efforts to reach net zero targets by the second half of the century will have profound materials supply implications. The anticipated scale and speed of the energy transition in both transportation and energy storage raises the question of whether we risk running out of the essential critical materials needed to enable this transition. Early projections suggest that disruptions are likely to occur in the short term for select critical materials, but at the same time these shortages provide a powerful incentive for the market to respond in a variety of ways before supply-level stress becomes dire. In April 2023, the MRSFocus on Sustainability subcommitteesponsored a panel discussion on the role of innovation in materials science and engineering in supporting supply chains for clean energy technologies. Drawing on examples from the panel discussion, this perspective examines the myth of materials scarcity, explains the compelling need for innovation in materials in helping supply chains dynamically adapt over time, and illustrates how the Materials Research Society is facilitating engagement with industry to support materials innovation, now and in the future.

    Graphical Abstract Highlights

    In this commentary, we examine the myth of materials scarcity, explain the compelling need for innovation in materials in helping supply chains dynamically adapt over time, and show how the materials research community can effectively engage with industry, policymakers, and funding agencies to drive the needed innovation in critical areas.

    Discussion

    Demand for certain materials used in clean energy technologies is forecasted to increase by multiples of current production over the next decades. This has drawn attention to supply chain risks and has created a myth that we will “run out” out of certain materials during the energy transition. The reality is that markets have multiple mechanisms to adapt over the long-term, and near-term shortages or expectations of shortages provide a powerful incentive for action. In this commentary, we highlight different ways materials innovation can help solve these issues in the near term and long term, and how the materials research community can effectively engage with industry and policymakers.

     
    more » « less
  5. Abstract

    High‐throughput screening has become one of the major strategies for the discovery of novel functional materials. However, its effectiveness is severely limited by the lack of sufficient and diverse materials in current materials repositories such as the open quantum materials database (OQMD). Recent progress in deep learning have enabled generative strategies that learn implicit chemical rules for creating hypothetical materials with new compositions and structures. However, current materials generative models have difficulty in generating structurally diverse, chemically valid, and stable materials. Here we propose CubicGAN, a generative adversarial network (GAN) based deep neural network model for large scale generative design of novel cubic materials. When trained on 375 749 ternary materials from the OQMD database, the authors show that the model is able to not only rediscover most of the currently known cubic materials but also generate hypothetical materials of new structure prototypes. A total of 506 such materials have been verified by phonon dispersion calculation. Considering the importance of cubic materials in wide applications such as solar panels, the GAN model provides a promising approach to significantly expand existing materials repositories, enabling the discovery of new functional materials via screening. The new crystal structures discovered are freely accessible atwww.carolinamatdb.org.

     
    more » « less