Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this paper, we study closed four-dimensional manifolds. In particular, we show that under various pinching curvature conditions (for example, the sectional curvature is no more than 5 6 of the smallest Ricci eigenvalue), the manifold is definite. If restricting to a metric with harmonic Weyl tensor, then it must be self-dual or anti-self-dual under the same conditions. Similarly, if restricting to an Einstein metric, then it must be either the complex projective space with its Fubini-Study metric, the round sphere, or their quotients. Furthermore, we also classify Einstein manifolds with positive intersection form and an upper bound on the sectional curvature.more » « less
-
In this paper, we study the first eigenvalue of the Jacobi operator on an integral n-varifold with constant mean curvature in the unit sphere Sn+1. We found the optimal upper bound and prove a rigidity result characterizing the case when it is attained. This gives a new characterization for certain singular Clifford tori.more » « less
An official website of the United States government

Full Text Available