skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Four-manifolds of pinched sectional curvature
In this paper, we study closed four-dimensional manifolds. In particular, we show that under various pinching curvature conditions (for example, the sectional curvature is no more than 5 6 of the smallest Ricci eigenvalue), the manifold is definite. If restricting to a metric with harmonic Weyl tensor, then it must be self-dual or anti-self-dual under the same conditions. Similarly, if restricting to an Einstein metric, then it must be either the complex projective space with its Fubini-Study metric, the round sphere, or their quotients. Furthermore, we also classify Einstein manifolds with positive intersection form and an upper bound on the sectional curvature.  more » « less
Award ID(s):
2104988
PAR ID:
10329200
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Pacific journal of mathematics
ISSN:
0030-8730
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract We show the existence of complete negative Kähler–Einstein metric on Stein manifolds with holomorphic sectional curvature bounded from above by a negative constant. We prove that any Kähler metrics on such manifolds can be deformed to the complete negative Kähler–Einstein metric using the normalized Kähler–Ricci flow. 
    more » « less
  2. Following Gromov, a Riemannian manifold is called area-extremal if any modification that increases scalar curvature must decrease the area of some tangent 2-plane. We prove that large classes of compact 4-manifolds, with or without boundary, with nonnegative sectional curvature are area-extremal. We also show that all regions of positive sectional curvature on 4-manifolds are locally area-extremal. These results are obtained analyzing sections in the kernel of a twisted Dirac operator constructed from pairs of metrics, and using the Finsler–Thorpe trick for sectional curvature bounds in dimension 4. 
    more » « less
  3. Abstract The paper studies complex manifolds whose Bergman metrics are incomplete but have constant holomorphic sectional curvature.We will construct a real analytic unbounded domain in C 2 \mathbb{C}^{2}whose Bergman metric is well-defined and has a positive constant holomorphic sectional curvature, which appears to be the first example of this kind.We will answer a long standing folklore conjecture that a Stein manifold has a negative constant holomorphic sectional curvature if and only if it is biholomorphic to a ball with a pluripolar set removed.Together with the uniqueness of a moment problem in the appendix of the paper provided by John Treuer, we will show that, under natural assumptions, there is no complex manifold whose Bergman metric is flat. 
    more » « less
  4. Dearricott, O.; Tuschmann, W.; Nikolayevsky, Y.; Leistner, T.; Crowley, D. (Ed.)
    The author has elsewhere given a complete classification of the compact oriented Einstein 4-manifolds that satisfy W⁺ (⍵, ⍵) > 0 for some self-dual harmonic 2-form ⍵, where W⁺ denotes the self-dual Weyl curvature. In this article, similar results are obtained when W⁺ (⍵ , ⍵) ≥ 0, provided the self-dual harmonic 2-form ⍵ is transverse to the zero section of Λ⁺→ M. However, this transversality condition plays an essential role in the story; dropping it leads one into wildly different territory where entirely different phenomena predominate. 
    more » « less
  5. Abstract We first provide a stochastic formula for the Carathéodory distance in terms of general Markovian couplings and prove a comparison result between the Carathéodory distance and the complete Kähler metric with a negative lower curvature bound using the Kendall–Cranston coupling. This probabilistic approach gives a version of the Schwarz lemma on complete noncompact Kähler manifolds with a further decomposition Ricci curvature into the orthogonal Ricci curvature and the holomorphic sectional curvature, which cannot be obtained by using Yau–Royden's Schwarz lemma. We also prove coupling estimates on quaternionic Kähler manifolds. As a by‐product, we obtain an improved gradient estimate of positive harmonic functions on Kähler manifolds and quaternionic Kähler manifolds under lower curvature bounds. 
    more » « less