Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Spatio-temporal machine learning is critically needed for a variety of societal applications, such as agricultural monitoring, hydrological forecast, and traffic management. These applications greatly rely on regional features that characterize spatial and temporal differences. However, spatio-temporal data often exhibit complex patterns and significant data variability across different locations. The labels in many real-world applications can also be limited, which makes it difficult to separately train independent models for different locations. Although meta learning has shown promise in model adaptation with small samples, existing meta learning methods remain limited in handling a large number of heterogeneous tasks, e.g., a large number of locations with varying data patterns. To bridge the gap, we propose task-adaptive formulations and a model-agnostic meta-learning framework that transforms regionally heterogeneous data into location-sensitive meta tasks. We conduct task adaptation following an easy-to-hard task hierarchy in which different meta models are adapted to tasks of different difficulty levels. One major advantage of our proposed method is that it improves the model adaptation to a large number of heterogeneous tasks. It also enhances the model generalization by automatically adapting the meta model of the corresponding difficulty level to any new tasks. We demonstrate the superiority of our proposed framework over a diverse set of baselines and state-of-the-art meta-learning frameworks. Our extensive experiments on real crop yield data show the effectiveness of the proposed method in handling spatial-related heterogeneous tasks in real societal applications.
-
Mapping of spatial hotspots, i.e., regions with significantly higher rates of generating cases of certain events (e.g., disease or crime cases), is an important task in diverse societal domains, including public health, public safety, transportation, agriculture, environmental science, and so on. Clustering techniques required by these domains differ from traditional clustering methods due to the high economic and social costs of spurious results (e.g., false alarms of crime clusters). As a result, statistical rigor is needed explicitly to control the rate of spurious detections. To address this challenge, techniques for statistically-robust clustering (e.g., scan statistics) have been extensively studied by the data mining and statistics communities. In this survey, we present an up-to-date and detailed review of the models and algorithms developed by this field. We first present a general taxonomy for statistically-robust clustering, covering key steps of data and statistical modeling, region enumeration and maximization, and significance testing. We further discuss different paradigms and methods within each of the key steps. Finally, we highlight research gaps and potential future directions, which may serve as a stepping stone in generating new ideas and thoughts in this growing field and beyond.more » « less