skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Methods for Silk Property Analyses across Structural Hierarchies and Scales
Silk from silkworms and spiders is an exceptionally important natural material, inspiring a range of new products and applications due to its high strength, elasticity, and toughness at low density, as well as its unique conductive and optical properties. Transgenic and recombinant technologies offer great promise for the scaled-up production of new silkworm- and spider-silk-inspired fibres. However, despite considerable effort, producing an artificial silk that recaptures the physico-chemical properties of naturally spun silk has thus far proven elusive. The mechanical, biochemical, and other properties of pre-and post-development fibres accordingly should be determined across scales and structural hierarchies whenever feasible. We have herein reviewed and made recommendations on some of those practices for measuring the bulk fibre properties; skin-core structures; and the primary, secondary, and tertiary structures of silk proteins and the properties of dopes and their proteins. We thereupon examine emerging methodologies and make assessments on how they might be utilized to realize the goal of developing high quality bio-inspired fibres.  more » « less
Award ID(s):
2105312
PAR ID:
10428952
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Molecules
Volume:
28
Issue:
5
ISSN:
1420-3049
Page Range / eLocation ID:
2120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Here, we review the processes involved in producing and assessing the quality of recombinant spider silk proteins (spidroins) and the challenges associated with their synthesis and spinning into robust fibres. We provide an overview of the techniques used to produce the proteins, from gene synthesis to expression in various host organisms. Evidence suggests that the N- and C-terminal regions of spidroins are of utmost importance for fibre assembly and the repetitive domains are responsible for the unique mechanical properties in both native and recombinant versions of spider silks. We describe the role of liquid–liquid phase separation (LLPS) in spidroin assembly and its importance in subsequent fibre formation. Recent developments in recombinant spidroin production and co-expression strategies for improving yield and scalability are highlighted. Techniques such as mass photometry and size exclusion chromatography (SEC) for analysing protein purity and assembly behaviour are thereupon detailed. Finally, we address the role that predictive computational methods play in the future of designing novel and high-performing materials inspired by spidroins. 
    more » « less
  2. Silk fibers produced by arthropods have inspired an array of materials with applications in healthcare, medical devices, textiles, and sustainability. Silks exhibit biodiversity with distinct variations in primary protein constituent sequences (fibroins, spidroins) and structures across taxonomic classifications, specifically the Lepidopteran and Araneae orders. Leveraging the biodiversity in arthropod silks offers advantages due to the diverse mechanical properties and thermal stabilities achievable, primarily attributed to variations in fiber crystallinity and repeating amino acid motifs. In this review, we aim to delineate known properties of silk fibers and correlate them with predicted protein sequences and secondary structures, informed by newly annotated genomes. We will discuss established patterns in repeat motifs governing specific properties and underscore the biological diversity within silk fibroin and spidroin sequences. Elucidating the relationship between protein sequences and properties of natural silk fibers will identify strategies for designing new materials through rational silk-based fiber design. 
    more » « less
  3. Renewable and degradable materials, formed using biopolymers as material precursors, are sought after in pharmaceutical, biomedical, and industrial fields. Silk-based biomaterials, primarily derived from the silk fibroin protein of the Bombyx mori (B. mori) silkworm, have advantageous mechanical properties, biocompatibility, and commercial availability. Recent efforts aim to expand the range of achievable silk-based biomaterial properties via alternative sources of silk proteins with different sequences and structures. These structural distinctions drive differences in physical and chemical properties of silk fibers, primarily due to the varying degree of crystallinity in the polymers. For the development of alternative silk-based materials, silk from Plodia interpunctella (P. interpunctella), a small agricultural pest that infests and damages food products via silk production, is evaluated. Early investigations have highlighted differences between P. interpunctella and B. mori silk fibroin proteins, however P. interpunctella silk still largely lacks characterization and optimization on both the silk fiber and bulk material level. This work evaluates the structural, thermal, mechanical, and cell-material properties of non-degummed and degummed P. interpunctella silk as a raw material for biomaterial fabrication and discusses the benefits and limitations of these proteins as new biopolymers. Observed properties are used to identify links between silk fibroin protein sequence and fiber function in addition to forming hypotheses in how P. interpunctella silk-based biomaterials will perform in comparison to other natural biopolymers. Future work aims to develop methods to process P. interpunctella silk into material formats, utilizing the material characteristics determined here as a baseline for shifts in material performance. 
    more » « less
  4. The fields of drug and gene delivery have been revolutionized by the discovery and characterization of polymer-based materials. Polymeric nanomaterials have emerged as a strategy for targeted delivery because of features such as their impressive biocompatibility and improved availability. Use of naturally derived polymers in these nanomaterials is advantageous due to their biodegradability and bioresorption. Natural biopolymer-based particles composed of silk fibroins and other silk fiber-inspired proteins have been the focus of research in drug delivery systems due to their simple synthesis, tunable characteristics, and ability to respond to stimuli. Several silk and silk-inspired polymers contain a high proportion of reactive side groups, allowing for functionalization and addition of targeting moieties. In this review, we discuss the main classes of silk and silk-inspired polymers that are being used in the creation of nanomaterials. We also focus on the fabrication techniques used in generating a tunable design space of silk-based polymeric nanomaterials and detail how that translates into use for drug delivery to several distinct microenvironments. 
    more » « less
  5. Silk fibers are produced by a wide variety of insects. The silkworm Bombyx mori (Bombyx) was domesticated because the physical properties of its silk fibers were amenable to the production of fine textiles. Subsequently, engineers have regenerated silk fibroin to form biomaterials. The monocular focus on Bombyx silk has underutilized the expanse of diverse silk proteins produced by more than 100,000 other arthropods. This vast array of silk fibers could be utilized for biomedical engineering challenges if sufficient rearing and purification processes are developed. Herein, we show that the moth, Plodia interpunctella (Plodia), represents an alternative silk source that is easily reared in highly regulated culture environments allowing for greater consistency in the silk produced. We controlled the temperature, resource availability (larvae/gram diet), and population density (larvae/mL) with the goal of increasing silk fiber production and improving homogeneity in Plodia silk proteins. We determined that higher temperatures accelerated insect growth and reduced life cycle length. Furthermore, we established initial protocols for the production of Plodia silk with optimal silk production occurring at 24 °C, with a resource availability of 10 larvae/gram and a population density of 0.72 larvae/mL. Population density was shown to be the most prominent driving force of Plodia silk mat formation among the three parameters assessed. Future work will need to link gene expression, protein production and purification, and resulting mechanical properties as a function of environmental cues to further transition Plodia silk into regenerated silk fibroin biomaterials. 
    more » « less