skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2106932

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider a real-time monitoring system where a source node (with energy limitations) aims to keep the information status at a destination node as fresh as possible by scheduling status update transmissions over a set of channels. The freshness of information at the destination node is measured in terms of the Age of Information (AoI) metric. In this setting, a natural tradeoff exists between the transmission cost (or equivalently, energy consumption) of the source and the achievable AoI performance at the destination. This tradeoff has been optimized in the existing literature under the assumption of having a complete knowledge of the channel statistics. In this work, we develop online learning-based algorithms with finite-time guarantees that optimize this tradeoff in the practical scenario where the channel statistics are unknown to the scheduler. In particular, when the channel statistics are known, the optimal scheduling policy is first proven to have a threshold-based structure with respect to the value of AoI (i.e., it is optimal to drop updates when the AoI value is below some threshold). This key insight was then utilized to develop the proposed learning algorithms that surprisingly achieve an order-optimal regret (i.e., O(1)) with respect to the time horizon length. 
    more » « less
    Free, publicly-accessible full text available October 23, 2026
  2. In this paper, we address the challenges of asynchronous gradient descent in distributed learning environments, particularly focusing on addressing the challenges of stale gradients and the need for extensive communication resources. We develop a novel communication efficient framework that incorporates a gradient evaluation algorithm to assess and utilize delayed gradients based on their quality, ensuring efficient and effective model updates while significantly reducing communication overhead. Our proposed algorithm requires agents to only send the norm of the gradients rather than the computed gradient. The server then decides whether to accept the gradient if the ratio between the norm of the gradient and the distance between the global model parameter and the local model parameter exceeds a certain threshold. With the proper choice of the threshold, we show that the convergence rate achieves the same order as the synchronous stochastic gradient without depending on the staleness value unlike most of the existing works. Given the computational complexity of the initial algorithm, we introduce a simplified variant that prioritizes the practical applicability without compromising on the convergence rates. Our simulations demonstrate that our proposed algorithms outperform existing state-of-the-art methods, offering improved convergence rates, stability, accuracy, and resource consumption. 
    more » « less
    Free, publicly-accessible full text available May 19, 2026
  3. In this paper, we study a sampling problem where a source takes samples from a Wiener process and transmits them through a wireless channel to a remote estimator. Due to channel fading, interference, and potential collisions, the packet transmissions are unreliable and could take random time durations. Our objective is to devise an optimal causal sampling policy that minimizes the long-term average mean square estimation error. This optimal sampling problem is a recursive optimal stopping problem, which is generally quite difficult to solve. However, we prove that the optimal sampling strategy is, in fact, a simple threshold policy where a new sample is taken whenever the instantaneous estimation error exceeds a threshold. This threshold remains a constant value that does not vary over time. By exploring the structure properties of the recursive optimal stopping problem, a low-complexity iterative algorithm is developed to compute the optimal threshold. This work generalizes previous research by incorporating both transmission errors and random transmission times into remote estimation. Numerical simulations are provided to compare our optimal policy with the zero-wait and age-optimal policies. 
    more » « less
  4. In this paper, we consider transmission scheduling in a status update system, where updates are generated periodically and transmitted over a Gilbert-Elliott fading channel. The goal is to minimize the long-run average age of information (AoI) under a long-run average energy constraint. We consider two practical cases to obtain channel state information (CSI): (i) without channel sensing and (ii) with delayed channel sensing. For (i), CSI is revealed by the feedback (ACK/NACK) of a transmission, but when no transmission occurs, CSI is not revealed. Thus, we have to balance tradeoffs across energy, AoI, channel exploration, and channel exploitation. The problem is formulated as a constrained partially observable Markov decision process (POMDP). We show that the optimal policy is a randomized mixture of no more than two stationary deterministic policies each of which is of a threshold-type in the belief on the channel. For (ii), (delayed) CSI is available via channel sensing. Then, the tradeoff is only between the AoI and energy. The problem is formulated as a constrained MDP. The optimal policy is shown to have a similar structure as in (i) but with an AoI associated threshold. With these, we develop an optimal structure-aware algorithm for each case. 
    more » « less