Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In this article we investigate novel signatures of radiation reaction via the angular deflection of an electron beam colliding at 90 degrees with an intense laser pulse. Due to the radiation reaction effect, the electrons can be deflected towards the beam axis for plane wave backgrounds, which is not possible in the absence of radiation reaction effects. The magnitude and size of the deflection angle can be controlled by tailoring the laser pulse shapes. The effect is first derived analytically using the Landau–Lifshitz equation, which allows to determine the important scaling behavior with laser intensity and particle energy. We then move on to full scale 3D Monte Carlo simulations to verify the effect is observable with present day laser technology. We investigate the opportunities for an indirect observation of laser depletion in such side scattering scenarios.more » « less
-
Abstract The rapid progress that plasma wakefield accelerators are experiencing is now posing the question as to whether they could be included in the design of the next generation of high-energy electron-positron colliders. However, the typical structure of the accelerating wakefields presents challenging complications for positron acceleration. Despite seminal proof-of-principle experiments and theoretical proposals, experimental research in plasma-based acceleration of positrons is currently limited by the scarcity of positron beams suitable to seed a plasma accelerator. Here, we report on the first experimental demonstration of a laser-driven source of ultra-relativistic positrons with sufficient spectral and spatial quality to be injected in a plasma accelerator. Our results indicate, in agreement with numerical simulations, selection and transport of positron beamlets containing$$N_{e+}\ge 10^5$$ positrons in a 5% bandwidth around 600 MeV, with femtosecond-scale duration and micron-scale normalised emittance. Particle-in-cell simulations show that positron beams of this kind can be guided and accelerated in a laser-driven plasma accelerator, with favourable scalings to further increase overall charge and energy using PW-scale lasers. The results presented here demonstrate the possibility of performing experimental studies of positron acceleration in a laser-driven wakefield accelerator.more » « less
-
Free, publicly-accessible full text available February 26, 2026
-
We have designed a new filter pack array to measure angular variations in x-ray spectra during a single shot. The filter pack was composed of repeating identical columns of aluminum and copper filters of varying thicknesses. These columns were located at different positions to measure the spectrum at each corresponding angle. This array was utilized in an experiment to measure the energy evolution of betatron x rays in a laser wakefield accelerator by curving the wakefield with a transverse density gradient, streaking the x rays across the array in front of an x-ray charge-coupled device (CCD) camera. After subtracting the background and “flattening” the image to remove spatial nonuniformities, a critical energy was calculated for each position that produced the best agreement with the measured signal. There was a clear change in critical energy with angle, shedding light on the dynamics of the electrons that traveled through the accelerator. These angles correspond to distinct emission times, covering a timescale of tens of picoseconds. The filter pack was capable of recovering these angular details without the impact of errors introduced by shot-to-shot variability.more » « lessFree, publicly-accessible full text available February 1, 2026
-
While plasma-based accelerators have the potential to positively impact a broad range of research topics, a route to application will only be possible through improved understanding of their stability. We present experimental results of a laser wakefield accelerator in the nonlinear regime in a helium gas jet target with a density transition produced by a razor blade in the flow. Modifications to the target setup are correlated with variations in the plasma density profile diagnosed via interferometry and the shot-to-shot variations of the density profile for nominally equal conditions are characterized. Through an in-depth sensitivity study using particle-in-cell simulations, the effects of changes in the plasma density profile on the accelerated electron beams are investigated. The results suggest that blade motion is more detrimental to stability than gas pressure fluctuations, and that early focusing of the laser may reduce the deleterious effects of such density fluctuations. Published by the American Physical Society2024more » « lessFree, publicly-accessible full text available November 1, 2025
-
With the rapid development of high-power petawatt class lasers worldwide, exploring physics in the strong field QED regime will become one of the frontiers for laser–plasma interactions research. Particle-in-cell codes, including quantum emission processes, are powerful tools for predicting and analyzing future experiments where the physics of relativistic plasma is strongly affected by strong field QED processes. The spin/polarization dependence of these quantum processes has been of recent interest. In this article, we perform a parametric study of the interaction of two laser pulses with an ultrarelativistic electron beam. The first pulse is optimized to generate high-energy photons by nonlinear Compton scattering and efficiently decelerate electron beam through the quantum radiation reaction. The second pulse is optimized to generate electron–positron pairs by the nonlinear Breit–Wheeler decay of photons with the maximum polarization dependence. This may be experimentally realized as a verification of the strong field QED framework, including the spin/polarization rates.more » « less
-
The investigation of spin and polarization effects in ultra-high intensity laser–plasma and laser–beam interactions has become an emergent topic in high-field science recently. In this paper, we derive a relativistic kinetic description of spin-polarized plasmas, where quantum-electrodynamics effects are taken into account via Boltzmann-type collision operators under the local constant field approximation. The emergence of anomalous precession is derived from one-loop self-energy contributions in a strong background field. We are interested, in particular, in the interplay between radiation reaction effects and the spin polarization of the radiating particles. For this, we derive equations for spin-polarized quantum radiation reaction from moments of the spin-polarized kinetic equations. By comparing with the classical theory, we identify and discuss the spin-dependent radiation reaction terms and radiative contributions to spin dynamics.more » « less