skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: Angularly resolved spectral reconstruction of x rays via filter pack attenuation
We have designed a new filter pack array to measure angular variations in x-ray spectra during a single shot. The filter pack was composed of repeating identical columns of aluminum and copper filters of varying thicknesses. These columns were located at different positions to measure the spectrum at each corresponding angle. This array was utilized in an experiment to measure the energy evolution of betatron x rays in a laser wakefield accelerator by curving the wakefield with a transverse density gradient, streaking the x rays across the array in front of an x-ray charge-coupled device (CCD) camera. After subtracting the background and “flattening” the image to remove spatial nonuniformities, a critical energy was calculated for each position that produced the best agreement with the measured signal. There was a clear change in critical energy with angle, shedding light on the dynamics of the electrons that traveled through the accelerator. These angles correspond to distinct emission times, covering a timescale of tens of picoseconds. The filter pack was capable of recovering these angular details without the impact of errors introduced by shot-to-shot variability.  more » « less
Award ID(s):
2108075
PAR ID:
10574781
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
AIP publishing
Date Published:
Journal Name:
Review of Scientific Instruments
Volume:
96
Issue:
2
ISSN:
0034-6748
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Accelerator-based x-ray free-electron lasers (XFELs) are the latest addition to the revolutionary tools of discovery for the 21st century. The two major components of an XFEL are an accelerator-produced electron beam and a magnetic undulator, which tend to be kilometer-scale long and expensive. A proof-of-principle demonstration of free-electron lasing at 27 nm using beams from compact laser wakefield accelerators was shown recently by using a magnetic undulator. However, scaling these concepts to x-ray wavelengths is far from straightforward as the requirements on the beam quality and jitters become much more stringent. Here, we present an ultracompact scheme to produce tens of attosecond x-ray pulses with several GW peak power utilizing a novel aspect of the FEL instability using a highly chirped, prebunched, and ultrabright tens of MeVelectron beam from a plasma-based accelerator interacting with an optical undulator. The FEL resonant relation between the prebunched period and the energy selects resonant electrons automatically from the highly chirped beam which leads to a stable generation of attosecond x-ray pulses. Furthermore, two-color attosecond pulses with subfemtosecond separation can be produced by adjusting the energy distribution of the electron beam so that multiple FEL resonances occur at different locations within the beam. Such a tunable coherent attosecond x-ray sources may open up a new area of attosecond science enabled by x-ray attosecond pump/probe techniques 
    more » « less
  2. Abstract We report the first >99% confidence detection of X-ray polarization in BL Lacertae. During a recent X-ray/ γ -ray outburst, a 287 ks observation (2022 November 27–30) was taken using the Imaging X-ray Polarimetry Explorer (IXPE), together with contemporaneous multiwavelength observations from the Neil Gehrels Swift observatory and XMM-Newton in soft X-rays (0.3–10 keV), NuSTAR in hard X-rays (3–70 keV), and optical polarization from the Calar Alto and Perkins Telescope observatories. Our contemporaneous X-ray data suggest that the IXPE energy band is at the crossover between the low- and high-frequency blazar emission humps. The source displays significant variability during the observation, and we measure polarization in three separate time bins. Contemporaneous X-ray spectra allow us to determine the relative contribution from each emission hump. We find >99% confidence X-ray polarization Π 2 – 4 keV = 21.7 − 7.9 + 5.6 % and electric vector polarization angle ψ 2–4keV = −28.°7 ± 8.°7 in the time bin with highest estimated synchrotron flux contribution. We discuss possible implications of our observations, including previous IXPE BL Lacertae pointings, tentatively concluding that synchrotron self-Compton emission dominates over hadronic emission processes during the observed epochs. 
    more » « less
  3. null (Ed.)
    ABSTRACT Recently, ground-based Imaging Atmospheric Cherenkov Telescopes have reported the detection of very-high-energy (VHE) gamma-rays from some gamma-ray bursts (GRBs). One of them, GRB 190829A, was triggered by the Swift satellite, and about 2 × 104 s after the burst onset the VHE gamma-ray emission was detected by H.E.S.S. with ∼5σ significance. This event had unusual features of having much smaller isotropic equivalent gamma-ray energy than typical long GRBs and achromatic peaks in X-ray and optical afterglow at about 1.4 × 103 s. Here, we propose an off-axis jet scenario that explains these observational results. In this model, the relativistic beaming effect is responsible for the apparently small isotropic gamma-ray energy and spectral peak energy. Using a jetted afterglow model, we find that the narrow jet, which has the initial Lorentz factor of 350 and the initial jet opening half-angle of 0.015 rad, viewed off-axis can describe the observed achromatic behaviour in the X-ray and optical afterglow. Another wide, baryon-loaded jet is necessary for the later-epoch X-ray and radio emissions. According to our model, the VHE gamma rays observed by H.E.S.S. at 2 × 104 s may come from the narrow jet through the synchrotron self-Compton process. 
    more » « less
  4. Ratios for target Ar K‐shell ionization associated with single and double electron capture, as well as the ratios corresponding to total capture and the projectile K x rays, were determined for 1.8‐ to 2.2‐MeV/u F7 + ,8 + ,9+projectiles. This work was performed at Western Michigan University with the tandem Van de Graaff accelerator. Coincidences between emitted K‐shell X‐rays (both target and projectile) and the corresponding charge‐changed particles were observed. The F9+Ar K X‐ray coincidence ratios for double to single capture are found to well exceed unity over the limited energy range of the measurements. Possible explanations for this anomalous behavior are discussed. 
    more » « less
  5. De Mitri, I.; Barbato, F.C.T.; Boncioli, D.; Evoli, C.; Pagliaroli, G.; Salamida, F. (Ed.)
    The IceCube Neutrino Observatory is a multi-component detector at the South Pole. Besides studying high-energy neutrinos, it is capable of measuring high-energy cosmic rays from PeV to EeV. This energy region is thought to cover the transition from galactic to extragalactic sources of cosmic rays. The observatory consists of the deep in-ice IceCube array, which measures the high-energy (≥500 GeV) muonic component, and the IceTop surface array, which is sensitive to the electromagnetic and low-energy muonic part of an air shower. The primary energy and the mass composition can be measured simultaneously by applying statistical methods including modern machine-learning techniques to reconstruct cosmic ray air showers. In this contribution, we will discuss recent improvements to the reconstruction techniques, the mass composition sensitivity, and an outlook on future improved measurements with the full surface scintillator/radio array to mitigate snow accumulation and measure the air shower maximum X max using imaging air-Cherenkov telescopes IceAct. 
    more » « less