skip to main content


Search for: All records

Award ID contains: 2110585

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The DAMIC experiment employs large-area, thick charge-coupled devices (CCDs) to search for the interactions of low-mass dark matter particles in the galactic halo with silicon atoms in the CCD target. From 2017 to 2019, DAMIC collected data with a seven-CCD array (40-gram target) installed in the SNOLAB underground laboratory. We report dark-matter search results, including a conspicuous excess of events above the background model below 200 V_{ee} V e e , whose origin remains unknown. We present details of the published spectral analysis, and update on the deployment of skipper CCDs to perform a more precise measurement by early 2023. 
    more » « less
  2. We report on recent progress in the search for dark matter particleswith masses from 1 Mev c ^{-2} − 2 to 1 Gev c ^{-2} − 2 .Several dark matter candidates in this mass range are expected togenerate measurable electronic-recoil signals in direct-detectionexperiments. We focus on dark matter particles scattering with electronsin semiconductor detectors since they have fundamentally the highestsensitivity due to their low ionization threshold. Charge-coupled device(CCD) silicon detectors are the leading technology, with significantprogress expected in the coming years. We present the status of the CCDprogram and briefly report on other efforts. 
    more » « less