With excellent energy resolution and ultralow-level radiogenic backgrounds, the high-purity germanium detectors in the Majorana Demonstrator enable searches for several classes of exotic dark matter (DM) models. In this work, we report new experimental limits on keV-scale sterile neutrino DM via the transition magnetic moment from conversion to active neutrinos 𝜈𝑠→𝜈𝑎. We report new limits on fermionic dark matter absorption (𝜒+𝐴→𝜈+𝐴) and sub-GeV DM-nucleus 3→2 scattering (𝜒+𝜒+𝐴→𝜙+𝐴), and new exclusion limits for bosonic dark matter (axionlike particles and dark photons). These searches utilize the (1–100)-keV low-energy region of a 37.5-kg y exposure collected by the Demonstrator between May 2016 and November 2019 using a set of 76Ge-enriched detectors whose surface exposure time was carefully controlled, resulting in extremely low levels of cosmogenic activation.
more »
« less
Even lighter particle dark matter
We report on recent progress in the search for dark matter particleswith masses from 1 Mev c ^{-2} − 2 to 1 Gev c ^{-2} − 2 .Several dark matter candidates in this mass range are expected togenerate measurable electronic-recoil signals in direct-detectionexperiments. We focus on dark matter particles scattering with electronsin semiconductor detectors since they have fundamentally the highestsensitivity due to their low ionization threshold. Charge-coupled device(CCD) silicon detectors are the leading technology, with significantprogress expected in the coming years. We present the status of the CCDprogram and briefly report on other efforts.
more »
« less
- Award ID(s):
- 2110585
- PAR ID:
- 10439078
- Publisher / Repository:
- SciPost
- Date Published:
- Journal Name:
- SciPost Physics Proceedings
- Issue:
- 12
- ISSN:
- 2666-4003
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The dual-phase liquid argon time projection chamber is presently one of the leading technologies to search for dark matter particles with masses below 10 GeV c−2. This was demonstrated by the DarkSide-50 experiment with approximately 50 kg of low-radioactivity liquid argon as target material. The next generation experiment DarkSide-20k, currently under construction, will use 1,000 times more argon and is expected to start operation in 2027. Based on the DarkSide-50 experience, here we assess the DarkSide-20k sensitivity to models predicting light dark matter particles, including Weakly Interacting Massive Particles (WIMPs) and sub-GeV c−2 particles interacting with electrons in argon atoms. With one year of data, a sensitivity improvement to dark matter interaction cross-sections by at least one order of magnitude with respect to DarkSide-50 is expected for all these models. A sensitivity to WIMP–nucleon interaction cross-sections below 1 × 10−42 cm2 is achievable for WIMP masses above 800 MeV c−2. With 10 years exposure, the neutrino fog can be reached for WIMP masses around 5 GeV c−2.more » « less
-
I compare the dark matter content within stellar half-mass radius expected in a $$\Lambda$$CDM-based galaxy formation model with existing observational estimates for the observed dwarf satellites of the Milky Way and ultra-diffuse galaxies (UDGs). The model reproduces the main properties and scaling relations of dwarf galaxies, in particular their stellar mass-size relation. I show that the model also reproduces the relation between the dark matter mass within the half-mass radius, $$M_{\rm dm}(more » « less
-
We use FIRE-2 zoom simulations of Milky Way size disk galaxies to derive easy-to-use relationships between the observed circular speed of the Galaxy at the Solar location,vc, and dark matter properties of relevance for direct detection experiments: the dark matter density, the dark matter velocity dispersion, and the speed distribution of dark matter particles near the Solar location. We find that both the local dark matter density and 3D velocity dispersion follow tight power laws withvc. Using this relation together with the observed circular speed of the Milky Way at the Solar radius, we infer the local dark matter density and velocity dispersion near the Sun to beρ= 0.42±0.06 GeV cm-3andσ3D= 280+19-18km s-1. We also find that the distribution of dark matter particle speeds is well-described by a modified Maxwellian with two shape parameters, both of which correlate with the observedvc. We use that modified Maxwellian to predict the speed distribution of dark matter near the Sun and find that it peaks at a most probable speed of 257 km s-1and begins to truncate sharply above 470 km s-1. This peak speed is somewhat higher than expected from the standard halo model, and the truncation occurs well below the formal escape speed to infinity, with fewer very-high-speed particles than assumed in the standard halo model.more » « less
-
Abstract Any dark matter spikes surrounding black holes in our Galaxy are sites of significant dark matter annihilation, leading to a potentially detectable neutrino signal. In this paper we examine 10 - 10 5 M ⊙ black holes associated with dark matter spikes that formed in early minihalos and still exist in our Milky Way Galaxy today, in light of neutrino data from the ANTARES [1] and IceCube [2] detectors. In various regions of the sky, we determine the minimum distance away from the solar system that a dark matter spike must be in order to have not been detected as a neutrino point source for a variety of representative dark matter annihilation channels. Given these constraints on the distribution of dark matter spikes in the Galaxy, we place significant limits on the formation of the first generation of stars in early minihalos — stronger than previous limits from gamma-ray searches in Fermi Gamma-Ray Space Telescope data. The larger black holes considered in this paper may arise as the remnants of Dark Stars after the dark matter fuel is exhausted; thus neutrino observations may be used to constrain the properties of Dark Stars. The limits are particularly strong for heavier WIMPs. For WIMP masses ∼ 5TeV, we show that ≲ 10 % of minihalos can host first stars that collapse into BHs larger than 10 3 M ⊙ .more » « less
An official website of the United States government

