skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2111522

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Although adaptive cancer therapy shows promise in integrating evolutionary dynamics into treatment scheduling, the stochastic nature of cancer evolution has seldom been taken into account. Various sources of random perturbations can impact the evolution of heterogeneous tumors, making performance metrics of any treatment policy random as well. In this paper, we propose an efficient method for selecting optimal adaptive treatment policies under randomly evolving tumor dynamics. The goal is to improve the cumulative “cost” of treatment, a combination of the total amount of drugs used and the total treatment time. As this cost also becomes random in any stochastic setting, we maximize the probability of reaching the treatment goals (tumor stabilization or eradication) without exceeding a pre-specified cost threshold (or a “budget”). We use a novel Stochastic Optimal Control formulation and Dynamic Programming to find such “threshold-aware” optimal treatment policies. Our approach enables an efficient algorithm to compute these policies for a range of threshold values simultaneously. Compared to treatment plans shown to be optimal in a deterministic setting, the new “threshold-aware” policies significantly improve the chances of the therapy succeeding under the budget, which is correlated with a lower general drug usage. We illustrate this method using two specific examples, but our approach is far more general and provides a new tool for optimizing adaptive therapies based on a broad range of stochastic cancer models. 
    more » « less
  2. Ruiz, Francisco; Dy, Jennifer; van de Meent, Jan-Willem (Ed.)
    We consider a task of surveillance-evading path-planning in a continuous setting. An Evader strives to escape from a 2D domain while minimizing the risk of detection (and immediate capture). The probability of detection is path-dependent and determined by the spatially inhomogeneous surveillance intensity, which is fixed but a priori unknown and gradually learned in the multi-episodic setting. We introduce a Bayesian reinforcement learning algorithm that relies on a Gaussian Process regression (to model the surveillance intensity function based on the information from prior episodes), numerical methods for Hamilton-Jacobi PDEs (to plan the best continuous trajectories based on the current model), and Confidence Bounds (to balance the exploration vs exploitation). We use numerical experiments and regret metrics to highlight the significant advantages of our approach compared to traditional graph-based algorithms of reinforcement learning. 
    more » « less