Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            The internet of Things (IoT) refers to a network of physical objects that are equipped with sensors, software, and other technologies in order to communicate with other devices and systems over the internet. IoT has emerged as one of the most important technologies of this century over the past few years. To ensure IoT systems' sustainability and security over the long term, several researchers lately motivated the need to incorporate the recently proposed zero trust (ZT) cybersecurity paradigm when designing and implementing access control models for IoT systems. This poster proposes a hybrid access control approach incorporating traditional and deep learning-based authorization techniques toward score-based ZT authorization for IoT systems.more » « less
- 
            The pervasive nature of smart connected devices has intruded on our daily lives and has become an intrinsic part of our world. However, the wide use of the Internet of Things (IoT) in critical application domains has raised concerns for user privacy and security against growing cyber threats. In particular, the implications of cyber exploitation for IoT devices are beyond financial losses and could constitute risks to human life. Most deployed access control solutions for smart IoT systems do not offer policy individualization, the ability to specify or change the policy according to the individual user’s preference. As a result, currently deployed systems are not well suited to specify access control policies in a multi-user environment, where users access the same devices to perform different operations. The system’s security gets tricky when the smart ecosystem involves complicated social relationships, much like in a smart home. Relationship-based access control (ReBAC), widely used in online social networks, offers the ability to consider user relationships in defining access control decisions and supports policy individualization. However, to the best of our knowledge, no such attempt has been made to develop a formal ReBAC model for smart IoT systems. This paper proposes a ReBAC IoT dynamic and fine-grained access control model which considers the social relationships among users along with the attributes to support an attributes-aware relationship-based access control model for smart IoT systems. ReBAC IoT is formally defined, illustrated through different use cases, implemented, and tested.more » « less
- 
            The pervasive nature of smart connected devices has intruded on our daily lives and has become an intrinsic part of our world. However, the wide use of the Internet of Things (IoT) in critical application domains has raised concerns for user privacy and security against growing cyber threats. In particular, the implications of cyber exploitation for IoT devices are beyond financial losses and could constitute risks to human life. Most deployed access control solutions for smart IoT systems do not offer policy individualization, the ability to specify or change the policy according to the individual user’s preference. As a result, currently deployed systems are not well suited to specify access control policies in a multi-user environment, where users access the same devices to perform different operations. The system’s security gets tricky when the smart ecosystem involves complicated social relationships, much like in a smart home. Relationship-based access control (ReBAC), widely used in online social networks, offers the ability to consider user relationships in defining access control decisions and supports policy individualization. However, to the best of our knowledge, no such attempt has been made to develop a formal ReBAC model for smart IoT systems. This paper proposes a ReBAC IoT dynamic and fine-grained access control model which considers the social relationships among users along with the attributes to support an attributes-aware relationship-based access control model for smart IoT systems. ReBAC IoT is formally defined, illustrated through different use cases, implemented, and tested.more » « less
- 
            Smart homes are interconnected homes in which a wide variety of digital devices with limited resources communicate with multiple users and among themselves using multiple protocols. The deployment of resource-limited devices and the use of a wide range of technologies expand the attack surface and position the smart home as a target for many potential security threats. Access control is among the top security challenges in smart home IoT. Several access control models have been developed or adapted for IoT in general, with a few specifically designed for the smart home IoT domain. Most of these models are built on the role-based access control (RBAC) model or the attribute-based access control (ABAC) model. However, recently some researchers demonstrated that the need arises for a hybrid model combining ABAC and RBAC, thereby incorporating the benefits of both models to better meet IoT access control challenges in general and smart homes requirements in particular. In this paper, we used two approaches to develop two different hybrid models for smart home IoT. We followed a role-centric approach and an attribute-centric approach to develop HyBAC RC and HyBAC AC , respectively. We formally define these models and illustrate their features through a use case scenario demonstration. We further provide a proof-of-concept implementation for each model in Amazon Web Services (AWS) IoT platform. Finally, we conduct a theoretical comparison between the two models proposed in this paper in addition to the EGRBAC model (RBAC model for smart home IoT) and HABAC model (ABAC model for smart home IoT), which were previously developed to meet smart homes’ challenges.more » « less
- 
            Smart homes are interconnected homes in which a wide variety of digital devices with limited resources communicate with multiple users and among themselves using multiple protocols. The deployment of resource-limited devices and the use of a wide range of technologies expand the attack surface and position the smart home as a target for many potential security threats. Access control is among the top security challenges in smart home IoT. Several access control models have been developed or adapted for IoT in general, with a few specifically designed for the smart home IoT domain. Most of these models are built on the role-based access control (RBAC) model or the attribute-based access control (ABAC) model. However, recently some researchers demonstrated that the need arises for a hybrid model combining ABAC and RBAC, thereby incorporating the benefits of both models to better meet IoT access control challenges in general and smart homes requirements in particular. In this paper, we used two approaches to develop two different hybrid models for smart home IoT. We followed a role-centric approach and an attribute-centric approach to develop HyBAC RC and HyBAC AC , respectively. We formally define these models and illustrate their features through a use case scenario demonstration. We further provide a proof-of-concept implementation for each model in Amazon Web Services (AWS) IoT platform. Finally, we conduct a theoretical comparison between the two models proposed in this paper in addition to the EGRBAC model (RBAC model for smart home IoT) and HABAC model (ABAC model for smart home IoT), which were previously developed to meet smart homes’ challenges.more » « less
- 
            Zero trust (ZT) is the term for an evolving set of cybersecurity paradigms that move defenses from static, network-based perimeters to focus on users, assets, and resources. It assumes no implicit trust is granted to assets or user accounts based solely on their physical or network location. We have billions of devices in IoT ecosystems connected to enable smart environments, and these devices are scattered around different locations, sometimes multiple cities or even multiple countries. Moreover, the deployment of resource-constrained devices motivates the integration of IoT and cloud services. This adoption of a plethora of technologies expands the attack surface and positions the IoT ecosystem as a target for many potential security threats. This complexity has outstripped legacy perimeter-based security methods as there is no single, easily identified perimeter for different use cases in IoT. Hence, we believe that the need arises to incorporate ZT guiding principles in workflows, systems design, and operations that can be used to improve the security posture of IoT applications. This paper motivates the need to implement ZT principles when developing access control models for smart IoT systems. It first provides a structured mapping between the ZT basic tenets and the PEI framework when designing and implementing a ZT authorization system. It proposes the ZT authorization requirements framework (ZT-ARF), which provides a structured approach to authorization policy models in ZT systems. Moreover, it analyzes the requirements of access control models in IoT within the proposed ZT-ARF and presents the vision and need for a ZT score-based authorization framework (ZT-SAF) that is capable of maintaining the access control requirements for ZT IoT connected systems.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available