skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2113904

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Training Large Language Models (LLMs) presents significant memory challenges, predominantly due to the growing size of weights and optimizer states. Common memory-reduction approaches, such as low-rank adaptation (LoRA), add a trainable low-rank matrix to the frozen pre-trained weight in each layer, reducing trainable parameters and optimizer states. However, such approaches typically underperform training with full-rank weights in both pre-training and fine-tuning stages since they limit the parameter search to a low-rank subspace and alter the training dynamics, and further, may require full-rank warm start. In this work, we propose Gradient Low-Rank Projection (GaLore), a training strategy that allows full-parameter learning but is more memory-efficient than common low-rank adaptation methods such as LoRA. Our approach reduces memory usage by up to 65.5% in optimizer states while maintaining both efficiency and performance for pre-training on LLaMA 1B and 7B architectures with C4 dataset with up to 19.7B tokens, and on fine-tuning RoBERTa on GLUE tasks. Our 8-bit GaLore further reduces optimizer memory by up to 82.5% and total training memory by 63.3%, compared to a BF16 baseline. Notably, we demonstrate, for the first time, the feasibility of pre-training a 7B model on consumer GPUs with 24GB memory (e.g., NVIDIA RTX 4090) without model parallel, checkpointing, or offloading strategies. 
    more » « less
  2. Many machine learning problems can be abstracted in solving game theory formulations and boil down to optimizing nested objectives, such as generative adversarial networks (GANs) and multi-agent reinforcement learning. Solving these games requires finding their stable fixed points or Nash equilibrium. However, existing algorithms for solving games suffer from empirical instability, hence demanding heavy ad-hoc tuning in practice. To tackle these challenges, we resort to the emerging scheme of Learning to Optimize (L2O), which discovers problem-specific efficient optimization algorithms through data-driven training. Our customized L2O framework for differentiable game theory problems, dubbed “Learning to Play Games" (L2PG), seeks a stable fixed point solution, by predicting the fast update direction from the past trajectory, with a novel gradient stability-aware, sign-based loss function. We further incorporate curriculum learning and self-learning to strengthen the empirical training stability and generalization of L2PG. On test problems including quadratic games and GANs, L2PG can substantially accelerate the convergence, and demonstrates a remarkably more stable trajectory. Codes are available at https://github.com/VITA-Group/L2PG. 
    more » « less
  3. Learning to optimize (L2O) has gained increasing popularity, which automates the design of optimizers by data-driven approaches. However, current L2O methods often suffer from poor generalization performance in at least two folds: (i) applying the L2O-learned optimizer to unseen optimizees, in terms of lowering their loss function values (optimizer generalization, or “generalizable learning of optimizers”); and (ii) the test performance of an optimizee (itself as a machine learning model), trained by the optimizer, in terms of the accuracy over unseen data (optimizee generalization, or “learning to generalize”). While the optimizer generalization has been recently studied, the optimizee generalization (or learning to generalize) has not been rigorously studied in the L2O context, which is the aim of this paper. We first theoretically establish an implicit connection between the local entropy and the Hessian, and hence unify their roles in the handcrafted design of generalizable optimizers as equivalent metrics of the landscape flatness of loss functions. We then propose to incorporate these two metrics as flatness-aware regularizers into the L2O framework in order to meta-train optimizers to learn to generalize, and theoretically show that such generalization ability can be learned during the L2O meta-training process and then transformed to the optimizee loss function. Extensive experiments consistently validate the effectiveness of our proposals with substantially improved generalization on multiple sophisticated L2O models and diverse optimizees. 
    more » « less
  4. David Wipf (Ed.)
    Learning to optimize (L2O) is an emerging approach that leverages machine learning to develop optimization methods, aiming at reducing the laborious iterations of hand engineering. It automates the design of an optimization method based on its performance on a set of training problems. This data-driven procedure generates methods that can efficiently solve problems similar to those in training. In sharp contrast, the typical and traditional designs of optimization methods are theory-driven, so they obtain performance guarantees over the classes of problems specified by the theory. The difference makes L2O suitable for repeatedly solving a particular optimization problem over a specific distribution of data, while it typically fails on out-of-distribution problems. The practicality of L2O depends on the type of target optimization, the chosen architecture of the method to learn, and the training procedure. This new paradigm has motivated a community of researchers to explore L2O and report their findings. This article is poised to be the first comprehensive survey and benchmark of L2O for continuous optimization. We set up taxonomies, categorize existing works and research directions, present insights, and identify open challenges. We benchmarked many existing L2O approaches on a few representative optimization problems. For reproducible research and fair benchmarking purposes, we released our software implementation and data in the package Open-L2O at https://github.com/VITA-Group/Open-L2O. 
    more » « less
  5. Optimizing an objective function with uncertainty awareness is well-known to improve the accuracy and confidence of optimization solutions. Meanwhile, another relevant but very different question remains yet open: how to model and quantify the uncertainty of an optimization algorithm (aka, optimizer) itself? To close such a gap, the prerequisite is to consider the optimizers as sampled from a distribution, rather than a few prefabricated and fixed update rules. We first take the novel angle to consider the algorithmic space of optimizers, and provide definitions for the optimizer prior and likelihood, that intrinsically determine the posterior and therefore uncertainty. We then leverage the recent advance of learning to optimize (L2O) for the space parameterization, with the end-to-end training pipeline built via variational inference, referred to as uncertainty-aware L2O (UA-L2O). Our study represents the first effort to recognize and quantify the uncertainty of the optimization algorithm. The extensive numerical results show that, UA-L2O achieves superior uncertainty calibration with accurate confidence estimation and tight confidence intervals, suggesting the improved posterior estimation thanks to considering optimizer uncertainty. Intriguingly, UA-L2O even improves optimization performances for two out of three test functions, the loss function in data privacy attack, and four of five cases of the energy function in protein docking. Our codes are released at https://github. com/Shen-Lab/Bayesian-L2O. 
    more » « less