Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Quantum federated learning (QFL) can facilitate collaborative learning across multiple clients using quantum machine learning (QML) models, while preserving data privacy. Although recent advances in QFL span different tasks like classification while leveraging several data types, no prior work has focused on developing a QFL framework that utilizes temporal data to approximate functions useful to analyze the performance of distributed quantum sensing networks. In this paper, a novel QFL framework that is the first to integrate quantum long short-term memory (QLSTM) models with temporal data is proposed. The proposedfederated QLSTM (FedQLSTM)framework is exploited for performing the task of function approximation. In this regard, three key use cases are presented: Bessel function approximation, sinusoidal delayed quantum feedback control function approximation, and Struve function approximation. Simulation results confirm that, for all considered use cases, the proposed FedQLSTM framework achieves a faster convergence rate under one local training epoch, minimizing the overall computations, and saving 25–33% of the number of communication rounds needed until convergence compared to an FL framework with classical LSTM models.more » « less
-
Free, publicly-accessible full text available December 6, 2025
-
Quantum federated learning (QFL) is a novel framework that integrates the advantages of classical federated learning (FL) with the computational power of quantum technologies. This includes quantum computing and quantum machine learning (QML), enabling QFL to handle high-dimensional complex data. QFL can be deployed over both classical and quantum communication networks in order to benefit from informationtheoretic security levels surpassing traditional FL frameworks. In this paper, we provide the first comprehensive investigation of the challenges and opportunities of QFL. We particularly examine the key components of QFL and identify the unique challenges that arise when deploying it over both classical and quantum networks. We then develop novel solutions and articulate promising research directions that can help address the identified challenges. We also provide actionable recommendations to advance the practical realization of QFL.more » « less
An official website of the United States government

Full Text Available