skip to main content


Search for: All records

Award ID contains: 2117224

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Problem-based learning (PBL) is gaining momentum in engineering education as a student-centered teaching approach that engages students in problems that mirror realities of practice. While the goal of this pedagogical approach is to more authentically prepare and train students for success in the field, it can be both challenging and frustrating for faculty to effectively implement. In this research paper, the opinions of faculty experts from aerospace engineering and PBL are considered. Data were collected through two structured focus groups to identify areas deemed critical for the transition of an introductory, second-year aerospace engineering course to PBL at an R1 university on the East Coast of the United States. Four different dimensions of PBL integration were considered: design, learning objectives, implementation/facilitation, and assessment. Through a thematic analysis of focus group transcripts, results showed that while the experts identified many areas that were critical to consider during this transition, there are important areas of divergence among the expert groups. In fact, areas of distinct opposition were exposed. This study highlights the importance of considering feedback from both content/technical experts and pedagogical design experts during the development and integration of PBL and lays the groundwork for further exploration of if and how consensus between these two groups can be found to support improved curriculum development. 
    more » « less
  2. Problem-based learning (PBL) is recognized as a pedagogical approach that is well-suited to preparing engineering students for the realities of the profession, but there are persistent implementation challenges that serve as barriers to broad adoption. This systematic literature review focuses on three facets of PBL – design, facilitation, and assessment – in search of operational guidelines for engineering faculty considering a transition to PBL. Findings led to two broad conclusions. First, there is a need for research on methods to support engineering faculty in problem design. Second, while current research provides thorough support for PBL facilitation and suggestions for assessment, there is a need for additional research to evaluate the efficacy of the various models of facilitation and assessment suggested by the literature. 
    more » « less
  3. This full paper is focused on research into how educators might use concept mapping to explore and design learning experiences in a problem-based learning environment. Attempts to incorporate more open-ended, ill-structured experiences have increased but are challenging for faculty to implement because there are no systematic methods or approaches that support the educator in designing these learning experiences. In the reported work, we present an exploratory study toward a systematic approach for comparing and manipulating problems. The approach combines concept mapping with Jonassen’s characterization of problems and the forms of knowledge required to solve them. We explore manipulation pathways for a problem that can be pursued by an instructor who is interested in impacting the dimensions of structuredness and complexity. We compare similarities and differences among two problems taken from introductory aerospace engineering courses. We consider manipulation of structuredness and complexity and the change propagation in forms of knowledge and solution pathways. 
    more » « less
  4. Introduction: The work reported here subscribes to the idea that the best way to learn - and thus, improve student educational outcomes - is through solving problems, yet recognizes that engineering students are generally provided insufficient opportunities to engage problems as they will be engaged in practice. Attempts to incorporate more open-ended, ill-structured experiences have increased but are challenging for faculty to implement because there are no systematic methods or approaches that support the educator in designing these learning experiences. Instead, faculty often start from the anchor of domain-specific concepts, an anchoring that is further reinforced by available textbook problems that are rarely open in nature. Open-ended problems are then created in ad-hoc ways, and in doing so, the problem-solving experience is often not realized as the instructor intended. Approach: The focus in this work is the development and preliminary implementation of a reflective approach to support instructors in examining the design intent of problem experiences. The reflective method combines concept mapping as developed by Joseph Novak with the work of David Jonassen and his characterization of problems and the forms of knowledge required to solve them. Results: We report on the development of a standard approach – a template -- for concept mapping of problems. As a demonstration, we applied the approach to a relatively simple, well-structured problem used in an introductory aerospace engineering course. Educator-created concept maps provided a visual medium for examining the connectivity of problem elements and forms of knowledge. Educator reflection after looking at and discussing the concept map revealed ways in which the problem engagement may differ from the perceived design intent. Implications: We consider the potential for the proposed method to support design and facilitation activities in problem-based learning (PBL) environments. We explore broader implications of the approach as it relates to 1) facilitating a priori faculty insights regarding student navigation of problem solving, 2) instructor reflection on problem design and facilitation, and 3) supporting problem design and facilitation. Additionally, we highlight important issues to be further investigated toward quantifying the value and limitations of the proposed approach. 
    more » « less