skip to main content


Title: Exploring the Differences and Manipulation Pathways of Introductory Aerospace Engineering Problems through Concept Mapping. Frontiers in Education.
This full paper is focused on research into how educators might use concept mapping to explore and design learning experiences in a problem-based learning environment. Attempts to incorporate more open-ended, ill-structured experiences have increased but are challenging for faculty to implement because there are no systematic methods or approaches that support the educator in designing these learning experiences. In the reported work, we present an exploratory study toward a systematic approach for comparing and manipulating problems. The approach combines concept mapping with Jonassen’s characterization of problems and the forms of knowledge required to solve them. We explore manipulation pathways for a problem that can be pursued by an instructor who is interested in impacting the dimensions of structuredness and complexity. We compare similarities and differences among two problems taken from introductory aerospace engineering courses. We consider manipulation of structuredness and complexity and the change propagation in forms of knowledge and solution pathways.  more » « less
Award ID(s):
2117224
NSF-PAR ID:
10376100
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings Frontiers in Education Conference
ISSN:
0190-5848
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Introduction: The work reported here subscribes to the idea that the best way to learn - and thus, improve student educational outcomes - is through solving problems, yet recognizes that engineering students are generally provided insufficient opportunities to engage problems as they will be engaged in practice. Attempts to incorporate more open-ended, ill-structured experiences have increased but are challenging for faculty to implement because there are no systematic methods or approaches that support the educator in designing these learning experiences. Instead, faculty often start from the anchor of domain-specific concepts, an anchoring that is further reinforced by available textbook problems that are rarely open in nature. Open-ended problems are then created in ad-hoc ways, and in doing so, the problem-solving experience is often not realized as the instructor intended. Approach: The focus in this work is the development and preliminary implementation of a reflective approach to support instructors in examining the design intent of problem experiences. The reflective method combines concept mapping as developed by Joseph Novak with the work of David Jonassen and his characterization of problems and the forms of knowledge required to solve them. Results: We report on the development of a standard approach – a template -- for concept mapping of problems. As a demonstration, we applied the approach to a relatively simple, well-structured problem used in an introductory aerospace engineering course. Educator-created concept maps provided a visual medium for examining the connectivity of problem elements and forms of knowledge. Educator reflection after looking at and discussing the concept map revealed ways in which the problem engagement may differ from the perceived design intent. Implications: We consider the potential for the proposed method to support design and facilitation activities in problem-based learning (PBL) environments. We explore broader implications of the approach as it relates to 1) facilitating a priori faculty insights regarding student navigation of problem solving, 2) instructor reflection on problem design and facilitation, and 3) supporting problem design and facilitation. Additionally, we highlight important issues to be further investigated toward quantifying the value and limitations of the proposed approach. 
    more » « less
  2. Previous studies have convincingly shown that traditional, content-centered, and didactic teaching methods are not effective for developing a deep understanding and knowledge transfer. Nor does it adequately address the development of critical problem-solving skills. Active and collaborative instruction, coupled with effective means to encourage student engagement, invariably leads to better student learning outcomes irrespective of academic discipline. Despite these findings, the existing construction engineering programs, for the most part, consist of a series of fragmented courses that mainly focus on procedural skills rather than on the fundamental and conceptual knowledge that helps students become innovative problem-solvers. In addition, these courses are heavily dependent on traditional lecture-based teaching methods focused on well-structured and closed-ended problems that prepare students to plug variables into equations to get the answer. Existing programs rarely offer a systematic approach to allow students to develop a deep understanding of the engineering core concepts and discover systematic solutions for fundamental problems. Without properly understanding these core concepts, contextualized in domain-specific settings, students are not able to develop a holistic view that will help them to recognize the big picture and think outside the box to come up with creative solutions for arising problems. The long history of empirical learning in the field of construction engineering shows the significant potential of cognitive development through direct experience and reflection on what works in particular situations. Of course, the complex nature of the construction industry in the twenty-first century cannot afford an education through trial and error in the real environment. However, recent advances in computer science can help educators develop virtual environments and gamification platforms that allow students to explore various scenarios and learn from their experiences. This study aims to address this need by assessing the effectiveness of guided active exploration in a digital game environment on students’ ability to discover systematic solutions for fundamental problems in construction engineering. To address this objective, through a research project funded by the NSF Division of Engineering Education and Centers (EEC), we designed and developed a scenario-based interactive digital game, called Zebel, to guide students solve fundamental problems in construction scheduling. The proposed gamified pedagogical approach was designed based on the Constructivism learning theory and a framework that consists of six essential elements: (1) modeling; (2) reflection; (3) strategy formation; (4) scaffolded exploration; (5) debriefing; and (6) articulation. We also designed a series of pre- and post-assessment instruments for empirical data collection to assess the effectiveness of the proposed approach. The proposed gamified method was implemented in a graduate-level construction planning and scheduling course. The outcomes indicated that students with no prior knowledge of construction scheduling methods were able to discover systematic solutions for fundamental scheduling problems through their experience with the proposed gamified learning method. 
    more » « less
  3. ABSTRACT Physics forms the core of any Materials Science Programme at undergraduate level. Knowing the properties of materials is fundamental to developing and designing new materials and new applications for known materials. “Physical Physics” is a physics education approach which is an innovative and promising instruction model that integrates physical activity with mechanics and material properties. It aims to significantly enhance the learning experience and to illustrate how physics works, while allowing students to be active participants and take ownership of the learning process. It has been successfully piloted with undergraduate students studying mechanics on a Games Development Programme. It is a structured guided learning approach which provides a scaffold for learners to develop their problem solving skills. The objective of having applied physics on a programme is to introduce students to the mathematical world. Today students view the world through smart devices. By incorporating student recorded videos into the laboratory experience the student can visualise the mathematical world. Sitting in a classroom learning about material properties does not easily facilitate an understanding of mathematical equations as mapping to a physical reality. In order to get the students motivated and immersed in the real mathematical and physical world, an approach which makes them think about the cause and effect of actions is used. Incorporating physical action with physics enables students to assimilate knowledge and adopt an action problem solving approach to the physics concept. This is an integrated approach that requires synthesis of information from various sources in order to accomplish the task. As a transferable skill, this will ensure that the material scientists will be visionary in their approach to real life problems. 
    more » « less
  4. Abstract

    This paper describes the design, implementation and research of the Cyber Sleuth Science Lab (CSSL), an innovative educational program and supporting virtual learning environment, that combines pedagogical theory, gender inclusive instruction strategies, scientific principles/practices, gamification methods, computational thinking, and real-world problem solving. This program provides underrepresented youth, especially girls, with digital forensic knowledge, skills and career pathways, challenging them to explore complex social issues related to technology and to become cyber sleuths using real-world digital forensic methods and tools to solve investigative scenarios. Students also learn about related careers while improving their cyber street smarts. The CSSL incorporates additional “outside of the computer” activities to strengthen students’ engagement such as structured in-classroom discussions, mock trials, and in-person interactions with practitioner role models. The CSSL was piloted in various forms to assess the suitability for in-school and out-of-school settings, and the students predominantly represented racial minorities. Research in this project relied on a mixed methods approach for data collection and analysis, including qualitative and quantitative methods, reinforced using learning analytics generated from the students clicking through the interface and interacting with the system. Analysis of gathered data indicate that the virtual learning environment developed in this project is highly effective for teaching digital forensic knowledge, skills, and abilities that are directly applicable in the workplace. Furthermore, the strategies for gender inclusive STEM instruction implemented in CSSL are effective for engaging girls without being harmful to boys’ engagement. Learning STEM through digital forensic science taps into girls’ motivations to address real-world problems that have direct relevance to their lives, and to protect and serve their community. After participating in the educational program, girls expressed a significantly greater increase in interest, relative to boys, in learning more about careers related to digital forensics and cybersecurity.

     
    more » « less
  5. We are focusing on three interconnected issues that negatively impact engineering disciplinary cultures: (1) diversity and inclusion issues that continue to plague engineering programs; (2) lack of adequate preparation for professional practices; (3) and exclusionary engineering disciplinary cultures that privilege technical knowledge over other forms of knowledge [1]. Although much effort has been devoted to these issues, traditional strategic and problem-solving orientations have not resulted in deep cultural transformations in many engineering programs. We posit that these three issues that are wicked problems. Wicked problems are ambiguous, interrelated and require complex problem-scoping and solutions that are not amenable with traditional and linear strategic planning and problem-solving orientations [2]. As design thinking provides an approach to solve complex problems that occur in organizational cultures [3], we argue that these wicked problems of engineering education cultures might be best understood and resolved through design thinking. As Elsbach and Stigliani contend, “the effective use of design thinking tools in organizations had a profound effect on organizational culture” [3, p. 2279]. However, not all organizational cultures support design thinking approaches well. Despite increasing calls to teach design as a central part of professional formation (e.g., ABET, National Academy of Engineers, etc.), many engineering programs, especially larger, legacy programs have not embraced fundamental design thinking [4-5] strategies or values [6-7]. According to Godfrey and Parker, many engineering cultures are characterized by linear epistemologies, “black and white” approaches to problem solving, and strategic “top down” ways of designing [8]. In contrast, design thinking approaches are characterized by ways of thinking and designing that prioritize prototyping, multiple stakeholder perspectives, and iterative problem-solving to address complex problems. In this paper, we examine the effectiveness of design thinking as a tool to address wicked problems in engineering education cultures, and the role of engineering culture itself in shaping the application and effectiveness of design thinking. More specially, we evaluate the role of design thinking in seeking cultural transformation at a School of Electrical and Computer Engineering (ECE) at Purdue University. We analyze interviews of members of the School after they participated in six design thinking sessions. Our previous research explored the effect of design thinking sessions on participant understanding of diversity and inclusion in biomedical engineering [9]. Herein, we explore participant experiences of design thinking sessions toward cultural change efforts regarding diversity and inclusion (D&I) within professional formation in ECE. We identified three tensions (push/pull dynamics of contradictions) that emerged from the participants’ experiences in the design sessions [10]. We conclude by discussing our emerging insights into the effectiveness of design thinking toward cultural change efforts in engineering. 
    more » « less