skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Forward and Inverse Modeling of Ice Sheet Flow Using Physics‐Informed Neural Networks: Application to Helheim Glacier, Greenland
Abstract Predicting the future contribution of the ice sheets to sea level rise over the next decades presents several challenges due to a poor understanding of critical boundary conditions, such as basal sliding. Traditional numerical models often rely on data assimilation methods to infer spatially variable friction coefficients by solving an inverse problem, given an empirical friction law. However, these approaches are not versatile, as they sometimes demand extensive code development efforts when integrating new physics into the model. Furthermore, this approach makes it difficult to handle sparse data effectively. To tackle these challenges, we use the Physics‐Informed Neural Networks (PINNs) to seamlessly integrate observational data and governing equations of ice flow into a unified loss function, facilitating the solution of both forward and inverse problems within the same framework. We illustrate the versatility of this approach by applying the framework to two‐dimensional problems on the Helheim Glacier in southeast Greenland. By systematically concealing one variable (e.g., ice speed, ice thickness, etc.), we demonstrate the ability of PINNs to accurately reconstruct hidden information. Furthermore, we extend this application to address a challenging mixed inversion problem. We show how PINNs are capable of inferring the basal friction coefficient while simultaneously filling gaps in the sparsely observed ice thickness. This unified framework offers a promising avenue to enhance the predictive capabilities of ice sheet models, reducing uncertainties, and advancing our understanding of poorly constrained physical processes.  more » « less
Award ID(s):
2118285 2147601
PAR ID:
10559896
Author(s) / Creator(s):
; ;
Publisher / Repository:
Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union.
Date Published:
Journal Name:
Journal of Geophysical Research: Machine Learning and Computation
Volume:
1
Issue:
3
ISSN:
2993-5210
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Predicting the future contributions of the ice sheets to sea level rise remains a significant challenge due to our limited understanding of key physical processes (e.g., basal friction, ice rheology) and the lack of observations of critical model inputs (e.g., bed topography). Traditional numerical models typically rely on data assimilation methods to estimate these variables by solving inverse problems based on conservation laws of mass, momentum, and energy. However, these methods are not versatile and require extensive code development to incorporate new physics. Moreover, their dependence on data alignment within computational grids hampers their adaptability, especially in the context of sparse data availability in space and time. To address these limitations, we developed PINNICLE (Physics-Informed Neural Networks for Ice and CLimatE), an open-source Python library dedicated to ice sheet modeling. PINNICLE seamlessly integrates observational data and physical laws, facilitating the solution of both forward and inverse problems within a single framework. PINNICLE currently supports a variety of conservation laws, including the Shelfy-Stream Approximation (SSA), Mono-Layer Higher-Order (MOLHO) models, and mass conservation equations, for both time-independent and time-dependent simulations. The library is user-friendly, requiring only the setting of a few hyperparameters for standard modeling tasks, while advanced users can define custom models within the framework. Additionally, PINNICLE is based on the DeepXDE library, which supports widely-used machine learning packages such as TensorFlow, PyTorch, and JAX, enabling users to select the backend that best fits their hardware. We describe here the implementation of PINNICLE and showcase this library with examples across the Greenland and Antarctic ice sheets for a range of forward and inverse problems. 
    more » « less
  2. Predicting the future contributions of the ice sheets to sea-level rise remains a significant challenge due to our limited understanding of key physical processes (e.g., basal friction, ice rheology) and the lack of observations of critical model inputs (e.g., bed topography). Traditional numerical models typically rely on data assimilation methods to estimate these variables by solving inverse problems based on conservation laws of mass, momentum, and energy. However, these methods are not versatile and require extensive code development to incorporate new physics. Moreover, their dependence on data alignment within computational grids hampers their adaptability, especially in the context of sparse data availability in space and time. To address these limitations, we developed PINNICLE (Physics-Informed Neural Networks for Ice and CLimatE), an open-source Python library dedicated to ice sheet modeling. PINNICLE seamlessly integrates observational data and physical laws, facilitating the solution of both forward and inverse problems within a single framework. PINNICLE currently supports a variety of conservation laws, including the Shelfy-Stream Approximation (SSA), MOno-Layer Higher-Order (MOLHO) models, and mass conservation equations, for both time-independent and time-dependent simulations. The library is user-friendly, requiring only the setting of a few hyperparameters for standard modeling tasks, while advanced users can define custom models within the framework. Additionally, PINNICLE is based on the DeepXDE library, which supports widely used machine learning packages such as TensorFlow, PyTorch, and JAX, enabling users to select the backend that best fits their hardware. We describe here the implementation of PINNICLE and showcase this library with examples across the Greenland and Antarctic ice sheets for a range of forward and inverse problems. 
    more » « less
  3. The physics-informed neural networks (PINNs) has been widely utilized to numerically approximate PDE problems. While PINNs has achieved good results in producing solutions for many partial differential equations, studies have shown that it does not perform well on phase field models. In this paper, we partially address this issue by introducing a modified physics-informed neural networks. In particular, they are used to numerically approximate Allen- Cahn-Ohta-Kawasaki (ACOK) equation with a volume constraint. Technically, the inverse of Laplacian in the ACOK model presents many challenges to the baseline PINNs. To take the zero- mean condition of the inverse of Laplacian, as well as the volume constraint, into consideration, we also introduce a separate neural network, which takes the second set of sampling points in the approximation process. Numerical results are shown to demonstrate the effectiveness of the modified PINNs. An additional benefit of this research is that the modified PINNs can also be applied to learn more general nonlocal phase-field models, even with an unknown nonlocal kernel. 
    more » « less
  4. This study employs physics-informed neural networks (PINNs) to reconstruct multiple flow fields in a transient natural convection system solely based on instantaneous temperature data at an arbitrary moment. Transient convection problems present reconstruction challenges due to the temporal variability of fields across different flow phases. In general, large reconstruction errors are observed during the incipient phase, while the quasi-steady phase exhibits relatively smaller errors, reduced by a factor of 2–4. We hypothesize that reconstruction errors vary across different flow phases due to the changing solution space of a PINN, inferred from the temporal gradients of the fields. Furthermore, we find that reconstruction errors tend to accumulate in regions where the spatial gradients are smaller than the order of 10−6, likely due to the vanishing gradient phenomenon. In convection phenomena, field variations often manifest across multiple scales in space. However, PINN-based reconstruction tends to preserve larger-scale variations, while smaller-scale variations become less pronounced due to the vanishing gradient problem. To mitigate the errors associated with vanishing gradients, we introduce a multi-scale approach that determines scaling constants for the PINN inputs and reformulates inputs across multiple scales. This approach improves the maximum and mean errors by 72.2% and 6.4%, respectively. Our research provides insight into the behavior of PINNs when applied to transient convection problems with large solution space and field variations across multiple scales. 
    more » « less
  5. The integration of machine learning in power systems, particularly in stability and dynamics, addresses the challenges brought by the integration of renewable energies and distributed energy resources (DERs). Traditional methods for power system transient stability, involving solving differential equations with computational techniques, face limitations due to their time-consuming and computationally demanding nature. This paper introduces physics-informed Neural Networks (PINNs) as a promising solution for these challenges, especially in scenarios with limited data availability and the need for high computational speed. PINNs offer a novel approach for complex power systems by incorporating additional equations and adapting to various system scales, from a single bus to multi-bus networks. Our study presents the first comprehensive evaluation of physics-informed Neural Networks (PINNs) in the context of power system transient stability, addressing various grid complexities. Additionally, we introduce a novel approach for adjusting loss weights to improve the adaptability of PINNs to diverse systems. Our experimental findings reveal that PINNs can be efficiently scaled while maintaining high accuracy. Furthermore, these results suggest that PINNs significantly outperform the traditional ode45 method in terms of efficiency, especially as the system size increases, showcasing a progressive speed advantage over ode45. 
    more » « less