Openness and intelligence are two enabling features to be introduced in next generation wireless networks, for example, Beyond 5G and 6G, to support service heterogeneity, open hardware, optimal resource utilization, and on-demand service deployment. The open radio access network (O-RAN) is a promising RAN architecture to achieve both openness and intelligence through virtualized network elements and well-defined interfaces. While deploying artificial intelligence (AI) models is becoming easier in O-RAN, one significant challenge that has been long neglected is the comprehensive testing of their performance in realistic environments. This article presents a general automated, distributed and AI-enabled testing framework to test AI models deployed in O-RAN in terms of their decision-making performance, vulnerability and security. This framework adopts a master-actor architecture to manage a number of end devices for distributed testing. More importantly, it leverages AI to automatically and intelligently explore the decision space of AI models in O-RAN. Both software simulation testing and software-defined radio hardware testing are supported, enabling rapid proof of concept research and experimental research on wireless research platforms.
more »
« less
End-to-End O-RAN Security Architecture, Threat Surface, Coverage, and the Case of the Open Fronthaul
O-RAN establishes an advanced radio access network (RAN) architecture that supports inter-operable, multi-vendor, and artificial intelligence (AI) controlled wireless access networks. The unique components, interfaces, and technologies of O-RAN differentiate it from the 3GPP RAN. Because O-RAN supports 3GPP protocols, currently 4G and 5G, while offering additional network interfaces and controllers, it has a larger attack surface. The O-RAN security requirements, vulnerabilities, threats, and countermeasures must be carefully assessed for it to become a platform for 5G Advanced and future 6G wireless. This article presents the ongoing standardization activities of the O-RAN Alliance for modeling the potential threats to the network and to the open fronthaul interface, in particular. We identify end-to-end security threats and discuss those on the open fronthaul in more detail. We then provide recommendations for countermeasures to tackle the identified security risks and encourage industry to establish standards and best practices for safe and secure implementations of the open fronthaul interface.
more »
« less
- PAR ID:
- 10515047
- Publisher / Repository:
- IEEE/ieeeXplore
- Date Published:
- Journal Name:
- IEEE Communications Standards Magazine
- Volume:
- 8
- Issue:
- 1
- ISSN:
- 2471-2825
- Page Range / eLocation ID:
- 36 to 43
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
IoT systems require a wireless infrastructure that supports 5G devices, including handovers between heterogeneous and/or small cell radio access networks. These networks are subject to increased radio link failures and loss of IoT network function. 3GPP new radio (NR) applications include multihoming, i.e., simultaneously connecting devices, and handover, i.e., changing the point of access to the network. This work leverages the open radio access network (O-RAN) alliance, which specifies a new open architecture with intelligent controllers, to improve handover management. A new feedback-based time-to-trigger (TTT) handover mechanism is introduced. Improved throughput and reduced radio link failures over other techniques were achieved.more » « less
-
The Open Radio Access Network (RAN) and its embodiment through the O-RAN Alliance specifications are poised to revolutionize the telecom ecosystem. O-RAN promotes virtualized RANs where disaggregated components are connected via open interfaces and optimized by intelligent controllers. The result is a new paradigm for the RAN design, deployment, and operations: O-RAN networks can be built with multi-vendor, interoperable components, and can be programmatically optimized through a centralized abstraction layer and data-driven closed-loop control. Therefore, understanding O-RAN, its architecture, its interfaces, and workflows is key for researchers and practitioners in the wireless community. In this article, we present the first detailed tutorial on O-RAN. We also discuss the main research challenges and review early research results. We provide a deep dive of the O-RAN specifications, describing its architecture, design principles, and the O-RAN interfaces. We then describe how the O-RAN RAN Intelligent Controllers (RICs) can be used to effectively control and manage 3GPP-defined RANs. Based on this, we discuss innovations and challenges of O-RAN networks, including the Artificial Intelligence (AI) and Machine Learning (ML) workflows that the architecture and interfaces enable, security, and standardization issues. Finally, we review experimental research platforms that can be used to design and test O-RAN networks, along with recent research results, and we outline future directions for O-RAN development.more » « less
-
The open radio access network (O-RAN) describes an industry-driven open architecture and interfaces for building next generation RANs with artificial intelligence (AI) controllers. We circulated a survey among researchers, developers, and practitioners to gather their perspectives on O-RAN as a framework for 6G wireless research and development (R&D). The majority responded in favor of O-RAN and identified R&D of interest to them. Motivated by these responses, this paper identifies the limitations of the current O-RAN specifications and the technologies for overcoming them. We recognize end-to-end security, deterministic latency, physical layer real-time control, and testing of AI-based RAN control applications as the critical features to enable and discuss R&D opportunities for extending the architectural capabilities of O-RAN as a platform for 6G wireless.more » « less
-
Lutu, Andra; Zhang, Ying (Ed.)Design for low latency networking is essential for tomorrow’s interactive applications, but it is essential to deploy incrementally and universally at the network’s last mile. While wired broadband ISPs are rolling out the leading queue occupancy signaling mechanisms, the cellular Radio Access Network (RAN), another important last mile to many users, lags behind these efforts. This paper proposes a new RAN design, L4Span, that abstracts the complexities of RAN queueing in a simple interface, thus tying the queue state of the RAN to end-to-end low-latency signaling all the way back to the content server. At millisecond-level timescales, L4Span predicts the RAN’s queuing occupancy and performs ECN marking for both low-latency and classic flows. L4Span is lightweight, requiring minimal RAN modifications, and remains 3GPP and O-RAN compliant for maximum ease of deployment. We implement a prototype on the srsRAN open-source software in C++. Our evaluation compares the performance of low-latency as well as classic flows with or without the deployment of L4Span in various wireless channel conditions. Results show that L4Span reduces the one-way delay of both low-latency and classic flows by up to 98%, while simultaneously maintaining near line-rate throughput.more » « less
An official website of the United States government

