skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2122042

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Zhang, Jiahua (Ed.)
    Abstract Microplastics are globally ubiquitous in marine environments, and their concentration is expected to continue rising at significant rates as a result of human activity. They present a major ecological problem with well-documented environmental harm. Sea spray from bubble bursting can transport salt and biological material from the ocean into the atmosphere, and there is a need to quantify the amount of microplastic that can be emitted from the ocean by this mechanism. We present a mechanistic study of bursting bubbles transporting microplastics. We demonstrate and quantify that jet drops are efficient at emitting microplastics up to 280μm in diameter and are thus expected to dominate the emitted mass of microplastic. The results are integrated to provide a global microplastic emission model which depends on bubble scavenging and bursting physics; local wind and sea state; and oceanic microplastic concentration. We test multiple possible microplastic concentration maps to find annual emissions ranging from 0.02 to 7.4—with a best guess of 0.1—mega metric tons per year and demonstrate that while we significantly reduce the uncertainty associated with the bursting physics, the limited knowledge and measurements on the mass concentration and size distribution of microplastic at the ocean surface leaves large uncertainties on the amount of microplastic ejected. 
    more » « less
  2. Abstract Wave breaking induced bubbles contribute a significant part of air‐sea gas fluxes. Recent modeling of the sea state dependent CO2flux found that bubbles contribute up to ∼40% of the total CO2air‐sea fluxes (Reichl & Deike, 2020,https://doi.org/10.1029/2020gl087267). In this study, we implement the sea state dependent bubble gas transfer formulation of Deike and Melville (2018,https://doi.org/10.1029/2018gl078758) into a spectral wave model (WAVEWATCH III) incorporating the spectral modeling of the wave breaking distribution from Romero (2019,https://doi.org/10.1029/2019gl083408). We evaluate the accuracy of the sea state dependent gas transfer parameterization against available measurements of CO2gas transfer velocity from 9 data sets (11 research cruises, see Yang et al. (2022,https://doi.org/10.3389/fmars.2022.826421)). The sea state dependent parameterization for CO2gas transfer velocity is consistent with observations, while the traditional wind‐only parameterization used in most global models slightly underestimates the observations of gas transfer velocity. We produce a climatology of the sea state dependent gas transfer velocity using reanalysis wind and wave data spanning 1980–2017. The climatology shows that the enhanced gas transfer velocity occurs frequently in regions with developed sea states (with strong wave breaking and high significant wave height). The present study provides a general sea state dependent parameterization for gas transfer, which can be implemented in global coupled models. 
    more » « less
  3. Abstract Wave breaking modulates air‐sea fluxes of energy, momentum, heat, and gases. Building on recent advances in the modeling of CO2gas exchange and wave breaking, we investigate the variability of bubble‐mediated gas transfer coefficients due to wave‐current interactions. Submesoscale current gradients strongly modulate wave breaking, which can enhance the bubble‐mediated gas transfer coefficient along temperature fronts and cold filaments. The enhancement of the gas transfer coefficient is over relatively small areas averaging out over larger regions. However, the correlation between positively anomalous gas transfer coefficients and regions with strong downwelling could potentially enhance CO2exchange over regions with increased submesoscale activity. An empirical scaling based on the mean wave period, root‐mean‐square current gradients, and friction velocity can explain the root‐mean‐square differences of gas transfer coefficients computed from solutions with and without current forcing. 
    more » « less
  4. Abstract Bubbles bursting at the ocean surface are an important source of ocean‐spray aerosol, with implications on radiative and cloud processes. Yet, very large uncertainties exist on the role of key physical controlling parameters, including wind speed, sea state and water temperature. We propose a mechanistic sea spray generation function that is based on the physics of bubble bursting. The number and mean droplet radius of jet and film drops is described by scaling laws derived from individual bubble bursting laboratory and numerical experiments, as a function of the bubble radius and the water physico‐chemical properties (viscosity, density and surface tension, all functions of temperature), with drops radii at production from 0.1 to 500 µm. Next, we integrate over the bubble size distribution entrained by breaking waves. Finally, the sea spray generation function is obtained by considering the volume flux of entrained bubbles due to breaking waves in the field constrained by the third moment of the breaking distribution (akin to the whitecap coverage). This mechanistic approach naturally integrates the role of wind and waves via the breaking distribution and entrained air flux, and a sensitivity to temperature via individual bubble bursting mechanisms. The resulting sea spray generation function has not been tuned or adjusted to match any existing data sets, in terms of magnitude of sea salt emissions and recently observed temperature dependencies. The remarkable coherence between the model and observations of sea salt emissions therefore strongly supports the mechanistic approach and the resulting sea spray generation function. 
    more » « less
  5. Abstract We experimentally investigate the depth distributions and dynamics of air bubbles entrained by breaking waves in a wind‐wave channel over a range of breaking wave conditions using high‐resolution imaging and three‐dimensional bubble tracking. Below the wave troughs, the bubble concentration decays exponentially with depth. Patches of entrained bubbles are identified for each breaking wave, and statistics describing the horizontal and vertical transport are presented. Aggregating our results, we find a stream‐wise transport faster than the associated Stokes drift and modified Stokes drift for buoyant particles, which is an effect not accounted for in current models of bubble transport. This enhancement in transport is attributed to the flow field induced by the breaking waves and is relevant for the transport of bubbles, oil droplets, and microplastics at the ocean surface. 
    more » « less
  6. The statistics of breaking wave fields are characterised within a novel multi-layer framework, which generalises the single-layer Saint-Venant system into a multi-layer and non-hydrostatic formulation of the Navier–Stokes equations. We simulate an ensemble of phase-resolved surface wave fields in physical space, where strong nonlinearities, including directional wave breaking and the subsequent highly rotational flow motion, are modelled, without surface overturning. We extract the kinematics of wave breaking by identifying breaking fronts and their speed, for freely evolving wave fields initialised with typical wind wave spectra. The $$\varLambda (c)$$ distribution, defined as the length of breaking fronts (per unit area) moving with speed $$c$$ to $$c+{\rm d}c$$ following Phillips ( J. Fluid Mech. , vol. 156, 1985, pp. 505–531), is reported for a broad range of conditions. We recover the $$\varLambda (c) \propto c^{-6}$$ scaling without wind forcing for sufficiently steep wave fields. A scaling of $$\varLambda (c)$$ based solely on the root-mean-square slope and peak wave phase speed is shown to describe the modelled breaking distributions well. The modelled breaking distributions are in good agreement with field measurements and the proposed scaling can be applied successfully to the observational data sets. The present work paves the way for simulations of the turbulent upper ocean directly coupled to a realistic breaking wave dynamics, including Langmuir turbulence, and other sub-mesoscale processes. 
    more » « less
  7. We perform direct numerical simulations of a gas bubble dissolving in a surrounding liquid. The bubble volume is reduced due to dissolution of the gas, with the numerical implementation of an immersed boundary method, coupling the gas diffusion and the Navier–Stokes equations. The methods are validated against planar and spherical geometries’ analytical moving boundary problems, including the classic Epstein–Plesset problem. Considering a bubble rising in a quiescent liquid, we show that the mass transfer coefficient $$k_L$$ can be described by the classic Levich formula $$k_L = (2/\sqrt {{\rm \pi} })\sqrt {\mathscr {D}_l\,U(t)/d(t)}$$ , with $d(t)$ and $U(t)$ the time-varying bubble size and rise velocity, and $$\mathscr {D}_l$$ the gas diffusivity in the liquid. Next, we investigate the dissolution and gas transfer of a bubble in homogeneous and isotropic turbulence flow, extending Farsoiya et al. ( J. Fluid Mech. , vol. 920, 2021, A34). We show that with a bubble size initially within the turbulent inertial subrange, the mass transfer coefficient in turbulence $$k_L$$ is controlled by the smallest scales of the flow, the Kolmogorov $$\eta$$ and Batchelor $$\eta _B$$ microscales, and is independent of the bubble size. This leads to the non-dimensional transfer rate $${Sh}=k_L L^\star /\mathscr {D}_l$$ scaling as $${Sh}/{Sc}^{1/2} \propto {Re}^{3/4}$$ , where $${Re}$$ is the macroscale Reynolds number $${Re} = u_{rms}L^\star /\nu _l$$ , with $$u_{rms}$$ the velocity fluctuations, $L^*$ the integral length scale, $$\nu _l$$ the liquid viscosity, and $${Sc}=\nu _l/\mathscr {D}_l$$ the Schmidt number. This scaling can be expressed in terms of the turbulence dissipation rate $$\epsilon$$ as $${k_L}\propto {Sc}^{-1/2} (\epsilon \nu _l)^{1/4}$$ , in agreement with the model proposed by Lamont & Scott ( AIChE J. , vol. 16, issue 4, 1970, pp. 513–519) and corresponding to the high $Re$ regime from Theofanous et al. ( Intl J. Heat Mass Transfer , vol. 19, issue 6, 1976, pp. 613–624). 
    more » « less