skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2122067

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Electrocatalytically active titanium oxynitride (TiNO) thin films were fabricated on commercially available titanium metal plates using a pulsed laser deposition method for energy storage applications. The elemental composition and nature of bonding were analyzed using X-ray photoelectron spectroscopy (XPS) to reveal the reacting species and active sites responsible for the enhanced electrochemical performance of the TiNO electrodes. Symmetric supercapacitor devices were fabricated using two TiNO working electrodes separated by an ion-transporting layer to analyze their real-time performance. The galvanostatic charge–discharge studies on the symmetric cell have indicated that TiNO films deposited on the polycrystalline titanium plates at lower temperatures are superior to TiNO films deposited at higher temperatures in terms of storage characteristics. For example, TiNO films deposited at 300 °C exhibited the highest specific capacity of 69 mF/cm2 at 0.125 mA/cm2 with an energy density of 7.5 Wh/cm2. The performance of this supercapacitor (300 °C TiNO) device is also found to be ∼22% better compared to that of a 500 °C TiNO supercapacitor with a capacitance retention ability of 90% after 1000 cycles. The difference in the electrochemical storage and capacitance properties is attributed to the reduced leaching away of oxygen from the TiNO films by the Ti plate at lower deposition temperatures, leading to higher oxygen content in the TiNO films and, consequently, a high redox activity at the electrode/electrolyte interface. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Abstract An amphiphilic block copolymer, poly (styrene-2-polyvinyl pyridine-ethylene oxide), was used as a structure-directing and stabilizing agent to synthesize TiO2/RuO2nanocomposite. The strong interaction of polymers with metal precursors led to formation of a porous heterointerface of TiO2/RuO2. It acted as a bridge for electron transport, which can accelerate the water splitting reaction. Scanning electron microscopy, energy-dispersiveX-ray spectroscopy, transmission electron microscopy, andX-ray diffraction analysis of TiO2/RuO2samples revealed successful fabrication of TiO2/RuO2nanocomposites. The TiO2/RuO2nanocomposites were used to measure electrochemical water splitting in three-electrode systems in 0.1-M KOH. Electrochemical activities unveil that TiO2/RuO2-150 nanocomposites displayed superior oxygen evolution reaction activity, having a low overpotential of 260 mV with a Tafel slope of 80 mVdec−1. Graphical abstract 
    more » « less
  3. Abstract Hydrogen gas is a prominent focus in pursuing renewable and clean alternative energy sources. The quest for maximizing hydrogen production yield involves the exploration of an ideal photocatalyst and the development of a simple, cost‐effective technique for its generation. Iron titanate has garnered attention in this context due to its photocatalytic properties, affordability, and non‐toxic nature. Over the years, different synthesis routes, different morphologies, and some modifications of iron titanate have been carried out to improve its photocatalytic performance by enhancing light absorption in the visible region, boosting charge carrier transfer, and decreasing recombination of electrons and holes. The use of iron titanate photocatalyst for hydrogen evolution reaction has seen an upward trend in recent times, and based on available findings, more can be done to improve the performance. This review paper provides a comprehensive overview of the fundamental principles of photocatalysis for hydrogen generation, encompassing the synthesis, morphology, and application of iron titanate‐based photocatalysts. The discussion delves into the limitations of current methodologies and present and future perspectives for advancing iron titanate photocatalysts. By addressing these limitations and contemplating future directions, the aim is to enhance the properties of materials fabricated for photocatalytic water splitting. 
    more » « less
  4. The magnetocaloric effect (MCE) in iron (Fe) nanoparticles incorporated within a titanium nitride (TiN) thin-film matrix grown using pulsed laser deposition (PLD) is investigated in this study. The study demonstrates the ability to control the entropy change across the magnetic phase transition by varying the size of the Fe nanoparticles. The structural characterization carried out using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and scanning transmission electron (TEM) showed that TiN films are (111) textured, while the Fe-particles are mostly spherical in shapes, are single-crystalline, and have a coherent structure with the surrounding TiN thin-film matrix. The TiN thin-film matrix was chosen as a spacer layer since it is nonmagnetic, is highly corrosion-resistive, and can serve as an excellent conduit for extracting heat due to its high thermal conductivity (11 W/m K). The magnetic properties of Fe–TiN systems were investigated using a superconducting quantum interference device (SQUID) magnetometer. In-plane magnetic fields were applied to record magnetization versus field (M–H) and magnetization versus temperature (M–T) curves. The results showed that the Fe–TiN heterostructure system exhibits a substantial isothermal entropy change (ΔS) over a wide temperature range, encompassing room temperature to the blocking temperature of the Fe nanoparticles. Using Maxwell’s relation and analyzing magnetization–temperature data under different magnetic fields, quantitative insights into the isothermal entropy change (ΔS) and magnetocaloric effect (MCE) were obtained for the Fe–TiN heterostructure system. The study points out a considerable negative change in ΔS that reaches up to 0.2 J/kg K at 0.2 T and 300 K for the samples with a nanoparticle size on the order of 7 nm. Comparative analysis revealed that Fe nanoparticle samples demonstrate higher refrigeration capacity (RC) in comparison to Fe thin-film multilayer samples, with the RC increasing as the Fe particle size decreases. These findings provide valuable insights into the potential application of Fe–TiN heterostructures in solid-state cooling technologies, highlighting their enhanced magnetocaloric properties. 
    more » « less
  5. Dental amalgam is an alloy consisting of a mixture of fine metallic powder of silver, tin, zinc, copper, and a trace amount of palladium in combination with about fifty percent elemental mercury that forms a matrix phase. Dental amalgams consisting of a high-copper content are the most common types of alloys currently utilized for the restoration of decayed, broken, and fractured posterior human teeth. The present research objective was primarily to improve the material properties by determining and analyzing the amount of mercury vapor released from dental amalgam received from eight different commercial brands. The mechanical hardness of the alloys was found to increase with an increase in copper content in the amalgam. The effect of copper addition on material aging was also studied. During the release of mercury vapor, the corresponding energies associated with the release of mercury vapor from each sample were determined for each successive measurement. The results indicated that increasing the copper content of the amalgam counters the release of mercury vapor from posterior teeth and improves the hardness properties. 
    more » « less
  6. Iron oxide nanoparticles (IONPs) were synthesized via a block copolymer-assisted hydrothermal method and the phase purity and the crystal structure were investigated by X-ray diffraction. The Rietveld analysis of X-ray diffractometer spectra shows the hexagonal phase symmetry of α-Fe2O3. Further, the vibrational study suggests Raman active modes: 2A1g + 5Eg associated with α-Fe2O3, which corroborates the Rietveld analysis and orbital analysis of 2PFe. The superparamagnetic behavior is confirmed by magnetic measurements performed by the physical properties measurement system. The systematic study of the Congo red (CR) interaction with IONPs using a UV-visible spectrophotometer and a liquid chromatography–tandem mass spectrometry system equipped with a triple quadrupole mass analyzer and an electrospray ionization interface shows effective adsorption. In visible light, the Fe2O3 nanoparticles get easily excited and generate electrons and holes. The photogenerated electrons reduce the Fe3+ ions to Fe2+ ions. The Fe2+/H2O2 oxidizes CR by the Fenton mechanism. The strong adsorption ability of prepared nanoparticles towards dyes attributes the potential candidates for wastewater treatment and other catalytic applications. 
    more » « less
  7. A magnetocaloric effect (MCE) with sizable isothermal entropy change (ΔS) maintained over a broad range of temperatures above the blocking temperature is reported for a rare earth-free superparamagnetic nanoparticle system comprising of Fe–TiN heterostructure. Superparamagnetic iron (Fe) particles were embedded in a titanium nitride (TiN) thin film matrix in a TiN/Fe/TiN multilayered pattern using a pulsed laser deposition method. High angle annular dark-field images in conjunction with dispersive energy analysis, recorded using scanning transmission electron microscopy, show a clear presence of alternating layers of Fe and TiN with a distinct atomic number contrast between Fe particles and TiN. Quantitative information about the isothermal entropy change (ΔS) and the magnetocaloric effect in the multilayer Fe–TiN system has been obtained by applying Maxwell relation to the magnetization vs temperature data at various fields. With the absence of a dynamic magnetic hysteresis above the blocking temperature, the negative ΔS as high as 4.18 × 103 J/Km3 (normal or forward MCE) is obtained at 3 T at 300 K. 
    more » « less