skip to main content


Search for: All records

Award ID contains: 2124104

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    The expanding usage of complex machine learning methods such as deep learning has led to an explosion in human activity recognition, particularly applied to health. However, complex models which handle private and sometimes protected data, raise concerns about the potential leak of identifiable data. In this work, we focus on the case of a deep network model trained on images of individual faces.

    Materials and methods

    A previously published deep learning model, trained to estimate the gaze from full-face image sequences was stress tested for personal information leakage by a white box inference attack. Full-face video recordings taken from 493 individuals undergoing an eye-tracking- based evaluation of neurological function were used. Outputs, gradients, intermediate layer outputs, loss, and labels were used as inputs for a deep network with an added support vector machine emission layer to recognize membership in the training data.

    Results

    The inference attack method and associated mathematical analysis indicate that there is a low likelihood of unintended memorization of facial features in the deep learning model.

    Conclusions

    In this study, it is showed that the named model preserves the integrity of training data with reasonable confidence. The same process can be implemented in similar conditions for different models.

     
    more » « less
  2. With the ever-increasing abundance of biomedical articles, improving the accuracy of keyword search results becomes crucial for ensuring reproducible research. However, keyword extraction for biomedical articles is hard due to the existence of obscure keywords and the lack of a comprehensive benchmark. PubMedAKE is an author-assigned keyword extraction dataset that contains the title, abstract, and keywords of over 843,269 articles from the PubMed open access subset database. This dataset, publicly available on Zenodo, is the largest keyword extraction benchmark with sufficient samples to train neural networks. Experimental results using state-of-the-art baseline methods illustrate the need for developing automatic keyword extraction methods for biomedical literature. 
    more » « less
  3. Free, publicly-accessible full text available July 15, 2025
  4. Differentially Private Federated Learning (DP-FL) has garnered attention as a collaborative machine learning approach that ensures formal privacy. Most DP-FL approaches ensure DP at the record-level within each silo for cross-silo FL. However, a single user's data may extend across multiple silos, and the desired user-level DP guarantee for such a setting remains unknown. In this study, we present Uldp-FL, a novel FL framework designed to guarantee user-level DP in cross-silo FL where a single user's data may belong to multiple silos. Our proposed algorithm directly ensures user-level DP through per-user weighted clipping, departing from group-privacy approaches. We provide a theoretical analysis of the algorithm's privacy and utility. Additionally, we improve the utility of the proposed algorithm with an enhanced weighting strategy based on user record distribution and design a novel private protocol that ensures no additional information is revealed to the silos and the server. Experiments on real-world datasets show substantial improvements in our methods in privacy-utility trade-offs under user-level DP compared to baseline methods. To the best of our knowledge, our work is the first FL framework that effectively provides user-level DP in the general cross-silo FL setting.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2025
  5. Human mobility data offers valuable insights for many applications such as urban planning and pandemic response, but its use also raises privacy concerns. In this paper, we introduce the Hierarchical and Multi-Resolution Network (HRNet), a novel deep generative model specifically designed to synthesize realistic human mobility data while guaranteeing differential privacy. We first identify the key difficulties inherent in learning human mobility data under differential privacy. In response to these challenges, HRNet integrates three components: a hierarchical location encoding mechanism, multi-task learning across multiple resolutions, and private pre-training. These elements collectively enhance the model's ability under the constraints of differential privacy. Through extensive comparative experiments utilizing a real-world dataset, HRNet demonstrates a marked improvement over existing methods in balancing the utility-privacy trade-off.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2025
  6. Free, publicly-accessible full text available May 13, 2025
  7. Free, publicly-accessible full text available March 1, 2025
  8. Free, publicly-accessible full text available February 20, 2025
  9. Free, publicly-accessible full text available December 8, 2024