skip to main content


Search for: All records

Award ID contains: 2124104

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    The expanding usage of complex machine learning methods such as deep learning has led to an explosion in human activity recognition, particularly applied to health. However, complex models which handle private and sometimes protected data, raise concerns about the potential leak of identifiable data. In this work, we focus on the case of a deep network model trained on images of individual faces.

    Materials and methods

    A previously published deep learning model, trained to estimate the gaze from full-face image sequences was stress tested for personal information leakage by a white box inference attack. Full-face video recordings taken from 493 individuals undergoing an eye-tracking- based evaluation of neurological function were used. Outputs, gradients, intermediate layer outputs, loss, and labels were used as inputs for a deep network with an added support vector machine emission layer to recognize membership in the training data.

    Results

    The inference attack method and associated mathematical analysis indicate that there is a low likelihood of unintended memorization of facial features in the deep learning model.

    Conclusions

    In this study, it is showed that the named model preserves the integrity of training data with reasonable confidence. The same process can be implemented in similar conditions for different models.

     
    more » « less
  2. With the ever-increasing abundance of biomedical articles, improving the accuracy of keyword search results becomes crucial for ensuring reproducible research. However, keyword extraction for biomedical articles is hard due to the existence of obscure keywords and the lack of a comprehensive benchmark. PubMedAKE is an author-assigned keyword extraction dataset that contains the title, abstract, and keywords of over 843,269 articles from the PubMed open access subset database. This dataset, publicly available on Zenodo, is the largest keyword extraction benchmark with sufficient samples to train neural networks. Experimental results using state-of-the-art baseline methods illustrate the need for developing automatic keyword extraction methods for biomedical literature. 
    more » « less
  3. Free, publicly-accessible full text available February 20, 2025
  4. Free, publicly-accessible full text available October 1, 2024
  5. Free, publicly-accessible full text available October 1, 2024
  6. Free, publicly-accessible full text available October 1, 2024
  7. Free, publicly-accessible full text available September 1, 2024
  8. Free, publicly-accessible full text available August 4, 2024
  9. Free, publicly-accessible full text available July 12, 2024
  10. The increasing demand for data-driven machine learning (ML) models has led to the emergence of model markets, where a broker collects personal data from data owners to produce high-usability ML models. To incentivize data owners to share their data, the broker needs to price data appropriately while protecting their privacy. For equitable data valuation , which is crucial in data pricing, Shapley value has become the most prevalent technique because it satisfies all four desirable properties in fairness: balance, symmetry, zero element, and additivity. For the right to be forgotten , which is stipulated by many data privacy protection laws to allow data owners to unlearn their data from trained models, the sharded structure in ML model training has become a de facto standard to reduce the cost of future unlearning by avoiding retraining the entire model from scratch. In this paper, we explore how the sharded structure for the right to be forgotten affects Shapley value for equitable data valuation in model markets. To adapt Shapley value for the sharded structure, we propose S-Shapley value, a sharded structure-based Shapley value, which satisfies four desirable properties for data valuation. Since we prove that computing S-Shapley value is #P-complete, two sampling-based methods are developed to approximate S-Shapley value. Furthermore, to efficiently update valuation results after data owners unlearn their data, we present two delta-based algorithms that estimate the change of data value instead of the data value itself. Experimental results demonstrate the efficiency and effectiveness of the proposed algorithms. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024