skip to main content


This content will become publicly available on July 1, 2024

Title: Equitable Data Valuation Meets the Right to Be Forgotten in Model Markets
The increasing demand for data-driven machine learning (ML) models has led to the emergence of model markets, where a broker collects personal data from data owners to produce high-usability ML models. To incentivize data owners to share their data, the broker needs to price data appropriately while protecting their privacy. For equitable data valuation , which is crucial in data pricing, Shapley value has become the most prevalent technique because it satisfies all four desirable properties in fairness: balance, symmetry, zero element, and additivity. For the right to be forgotten , which is stipulated by many data privacy protection laws to allow data owners to unlearn their data from trained models, the sharded structure in ML model training has become a de facto standard to reduce the cost of future unlearning by avoiding retraining the entire model from scratch. In this paper, we explore how the sharded structure for the right to be forgotten affects Shapley value for equitable data valuation in model markets. To adapt Shapley value for the sharded structure, we propose S-Shapley value, a sharded structure-based Shapley value, which satisfies four desirable properties for data valuation. Since we prove that computing S-Shapley value is #P-complete, two sampling-based methods are developed to approximate S-Shapley value. Furthermore, to efficiently update valuation results after data owners unlearn their data, we present two delta-based algorithms that estimate the change of data value instead of the data value itself. Experimental results demonstrate the efficiency and effectiveness of the proposed algorithms.  more » « less
Award ID(s):
2124104 2125530
NSF-PAR ID:
10448789
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the VLDB Endowment
Volume:
16
Issue:
11
ISSN:
2150-8097
Page Range / eLocation ID:
3349 to 3362
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Data-driven machine learning has become ubiquitous. A marketplace for machine learning models connects data owners and model buyers, and can dramatically facilitate data-driven machine learning applications. In this paper, we take a formal data marketplace perspective and propose the first en D -to-end mod e l m a rketp l ace with diff e rential p r ivacy ( Dealer ) towards answering the following questions: How to formulate data owners' compensation functions and model buyers' price functions? How can the broker determine prices for a set of models to maximize the revenue with arbitrage-free guarantee, and train a set of models with maximum Shapley coverage given a manufacturing budget to remain competitive ? For the former, we propose compensation function for each data owner based on Shapley value and privacy sensitivity, and price function for each model buyer based on Shapley coverage sensitivity and noise sensitivity. Both privacy sensitivity and noise sensitivity are measured by the level of differential privacy. For the latter, we formulate two optimization problems for model pricing and model training, and propose efficient dynamic programming algorithms. Experiment results on the real chess dataset and synthetic datasets justify the design of Dealer and verify the efficiency and effectiveness of the proposed algorithms. 
    more » « less
  2. Data valuation, a growing field that aims at quantifying the usefulness of individual data sources for training machine learning (ML) models, faces notable yet often overlooked privacy challenges. This paper studies these challenges with a focus on KNN-Shapley, one of the most practical data valuation methods nowadays. We first emphasize the inherent privacy risks of KNN-Shapley, and demonstrate the significant technical challenges in adapting KNN-Shapley to accommodate differential privacy (DP). To overcome these challenges, we introduce TKNN-Shapley, a refined variant of KNN-Shapley that is privacy-friendly, allowing for straightforward modifications to incorporate DP guarantee (DP-TKNN-Shapley). We show that DP-TKNN-Shapley has several advantages and offers a superior privacy-utility tradeoff compared to naively privatized KNN-Shapley. Moreover, even non-private TKNN-Shapley matches KNN-Shapley's performance in discerning data quality. Overall, our findings suggest that TKNN-Shapley is a promising alternative to KNN-Shapley, particularly for real-world applications involving sensitive data. 
    more » « less
  3. null (Ed.)
    Using machine learning (ML) to develop quantitative structure—activity relationship (QSAR) models for contaminant reactivity has emerged as a promising approach because it can effectively handle non-linear relationships. However, ML is often data-demanding, whereas data scarcity is common in QSAR model development. Here, we proposed two approaches to address this issue: combining small datasets and transferring knowledge between them. First, we compiled four individual datasets for four oxidants, i.e., SO4•-, HClO, O3 and ClO2, each dataset containing a different number of contaminants with their corresponding rate constants and reaction conditions (pH and/or temperature). We then used molecular fingerprints (MF) or molecular descriptors (MD) to represent the contaminants; combined them with ML algorithms to develop individual QSAR models for these four datasets; and interpreted the models by the Shapley Additive exPlantion (SHAP) method. The results showed that both the optimal contaminant representation and the best ML algorithm are dataset dependent. Next, we merged these four datasets and developed a unified model, which showed better predictive performance on the datasets of HClO, O3 and ClO2 because the model ‘corrected’ some wrongly learned effects of several atom groups. We further developed knowledge transfer models based on the second approach, the effectiveness of which depends on if there is consistent knowledge shared between the two datasets as well as the predictive performance of the respective single models. This study demonstrated the benefit of combining small similar datasets and transferring knowledge between them, which can be leveraged to boost the predictive performance of ML-assisted QSAR models. 
    more » « less
  4. Shapley value is a classic notion from game theory, historically used to quantify the contributions of individuals within groups, and more recently applied to assign values to data points when training machine learning models. Despite its foundational role, a key limitation of the data Shapley framework is that it only provides valuations for points within a fixed data set. It does not account for statistical aspects of the data and does not give a way to reason about points outside the data set. To address these limitations, we propose a novel framework -- distributional Shapley -- where the value of a point is defined in the context of an underlying data distribution. We prove that distributional Shapley has several desirable statistical properties; for example, the values are stable under perturbations to the data points themselves and to the underlying data distribution. We leverage these properties to develop a new algorithm for estimating values from data, which comes with formal guarantees and runs two orders of magnitude faster than state-of-the-art algorithms for computing the (non-distributional) data Shapley values. We apply distributional Shapley to diverse data sets and demonstrate its utility in a data market setting. 
    more » « less
  5. Introduction

    Big graphs like social network user interactions and customer rating matrices require significant computing resources to maintain. Data owners are now using public cloud resources for storage and computing elasticity. However, existing solutions do not fully address the privacy and ownership protection needs of the key involved parties: data contributors and the data owner who collects data from contributors.

    Methods

    We propose a Trusted Execution Environment (TEE) based solution: TEE-Graph for graph spectral analysis of outsourced graphs in the cloud. TEEs are new CPU features that can enable much more efficient confidential computing solutions than traditional software-based cryptographic ones. Our approach has several unique contributions compared to existing confidential graph analysis approaches. (1) It utilizes the unique TEE properties to ensure contributors' new privacy needs, e.g., the right of revocation for shared data. (2) It implements efficient access-pattern protection with a differentially private data encoding method. And (3) it implements TEE-based special analysis algorithms: the Lanczos method and the Nystrom method for efficiently handling big graphs and protecting confidentiality from compromised cloud providers.

    Results

    The TEE-Graph approach is much more efficient than software crypto approaches and also immune to access-pattern-based attacks. Compared with the best-known software crypto approach for graph spectral analysis, PrivateGraph, we have seen that TEE-Graph has 103−105times lower computation, storage, and communication costs. Furthermore, the proposed access-pattern protection method incurs only about 10%-25% of the overall computation cost.

    Discussion

    Our experimentation showed that TEE-Graph performs significantly better and has lower costs than typical software approaches. It also addresses the unique ownership and access-pattern issues that other TEE-related graph analytics approaches have not sufficiently studied. The proposed approach can be extended to other graph analytics problems with strong ownership and access-pattern protection.

     
    more » « less