skip to main content


Search for: All records

Award ID contains: 2126052

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Graph-guided learning has well-documented impact in a gamut of network science applications. A prototypical graph-guided learning task deals with semi-supervised learning over graphs, where the goal is to predict the nodal values or labels of unobserved nodes, by leveraging a few nodal observations along with the underlying graph structure. This is particularly challenging under privacy constraints or generally when acquiring nodal observations incurs high cost. In this context, the present work puts forth a Bayesian graph-driven self-supervised learning (Self-SL) approach that: (i) learns powerful nodal embeddings emanating from easier to solve auxiliary tasks that map local to global connectivity information; and, (ii) adopts an ensemble of Gaussian processes (EGPs) with adaptive weights as nodal embeddings are processed online. Unlike most existing deterministic approaches, the novel approach offers accurate estimates of the unobserved nodal values along with uncertainty quantification that is important especially in safety critical applications. Numerical tests on synthetic and real graph datasets showcase merits of the novel EGP-based Self-SL method. 
    more » « less
    Free, publicly-accessible full text available December 10, 2024
  2. Meta-learning owns unique effectiveness and swiftness in tackling emerging tasks with limited data. Its broad applicability is revealed by viewing it as a bi-level optimization problem. The resultant algorithmic viewpoint however, faces scalability issues when the inner-level optimization relies on gradient-based iterations. Implicit differentiation has been considered to alleviate this challenge, but it is restricted to an isotropic Gaussian prior, and only favors deterministic meta-learning approaches. This work markedly mitigates the scalability bottleneck by cross-fertilizing the benefits of implicit differentiation to probabilistic Bayesian meta-learning. The novel implicit Bayesian meta-learning (iBaML) method not only broadens the scope of learnable priors, but also quantifies the associated uncertainty. Furthermore, the ultimate complexity is well controlled regardless of the inner-level optimization trajectory. Analytical error bounds are established to demonstrate the precision and efficiency of the generalized implicit gradient over the explicit one. Extensive numerical tests are also carried out to empirically validate the performance of the proposed method. 
    more » « less
    Free, publicly-accessible full text available June 27, 2024
  3. Assessing set-membership and evaluating distances to the related set boundary are problems of widespread interest, and can often be computationally challenging. Seeking efficient learning models for such tasks, this paper deals with voltage stability margin prediction for power systems. Supervised training of such models is conventionally hard due to high-dimensional feature space, and a cumbersome label-generation process. Nevertheless, one may find related easy auxiliary tasks, such as voltage stability verification, that can aid in training for the hard task. This paper develops a novel approach for such settings by leveraging transfer learning. A Gaussian process-based learning model is efficiently trained using learning- and physics-based auxiliary tasks. Numerical tests demonstrate markedly improved performance that is harnessed alongside the benefit of uncertainty quantification to suit the needs of the considered application. 
    more » « less
    Free, publicly-accessible full text available June 4, 2024
  4. Higher-order link prediction (HOLP) seeks missing links capturing dependencies among three or more network nodes. Predicting high-order links (HOLs) can for instance reveal hyperlinks in the structure of drug substance and metabolic networks. Existing methods either make restrictive assumptions regarding the emergence of HOLs, or, they rely on reduced dimensionality models of limited expressiveness. To overcome these limitations, the HOLP approach developed here leverages distribution similarities across embeddings as captured by a learnable probability metric. The intuition underpinning the novel approach is that sets of nodes whose embeddings are less similar in distribution, are less likely to be connected by a HOL. Specifically, nonlinear dimensionality reduction is effected through a Gaussian process latent variable model that yields nodal embeddings, and also learns a data-driven similarity function (kernel). This kernel forms the core of a maximum mean discrepancy probability metric. Tests on benchmark datasets illustrate the potential of the proposed approach. 
    more » « less
    Free, publicly-accessible full text available June 4, 2024
  5. Optimizing a black-box function that is expensive to evaluate emerges in a gamut of machine learning and artifcial intelligence applications including drug discovery, policy optimization in robotics, and hyperparameter tuning of learning models to list a few. Bayesian optimization (BO) provides a principled framework to fnd the global optimum of such functions using a limited number of function evaluations. BO relies on a statistical surrogate model to actively select new query points, that is typically captured by a Gaussian process (GP). Unlike most existing approaches that hinge on a single GP surrogate model with a pre-selected kernel function that may confne the expressiveness of the sought function especially under the limited evaluation budget, the present work puts forth a weighted ensemble of GPs as a surrogate model. Building on the advocated Gaussian mixture (GM) posterior, the EGP framework adapts to the most ftted surrogate model as data arrive on-the-fy, offering a richer function space. For the acquisition of next evaluation points, the EGP-based posterior is coupled with an adaptive expected improvement (EI) criterion to balance exploration and exploitation of the search space. Numerical tests on a set of benchmark synthetic functions and two robotic tasks, demonstrate the impressive benefts of the proposed approach. 
    more » « less
    Free, publicly-accessible full text available June 4, 2024
  6. Bayesian optimization (BO) has well-documented merits for optimizing black-box functions with an expensive evaluation cost. Such functions emerge in applications as diverse as hyperparameter tuning, drug discovery, and robotics. BO hinges on a Bayesian surrogate model to sequentially select query points so as to balance exploration with exploitation of the search space. Most existing works rely on a single Gaussian process (GP) based surrogate model, where the kernel function form is typically preselected using domain knowledge. To bypass such a design process, this paper leverages an ensemble (E) of GPs to adaptively select the surrogate model fit on-the-fly, yielding a GP mixture posterior with enhanced expressiveness for the sought function. Acquisition of the next evaluation input using this EGP-based function posterior is then enabled by Thompson sampling (TS) that requires no additional design parameters. To endow function sampling with scalability, random feature-based kernel approximation is leveraged per GP model. The novel EGP-TS readily accommodates parallel operation. To further establish convergence of the proposed EGP-TS to the global optimum, analysis is conducted based on the notion of Bayesian regret for both sequential and parallel settings. Tests on synthetic functions and real-world applications showcase the merits of the proposed method. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  7. Recent years have witnessed the emergence of mobile edge computing (MEC), on the premise of a costeffective enhancement in the computational ability of hardware-constrained wireless devices (WDs) comprising the Internet of Things (IoT). In a general multi-server multi-user MEC system, each WD has a computational task to execute and has to select binary (off)loading decisions, along with the analog-amplitude resource allocation variables in an online manner, with the goal of minimizing the overall energy-delay cost (EDC) with dynamic system states. While past works typically rely on the explicit expression of the EDC function, the present contribution considers a practical setting, where in lieu of system state information, the EDC function is not available in analytical form, and instead only the function values at queried points are revealed. Towards tackling such a challenging online combinatorial problem with only bandit information, novel Bayesian optimization (BO) based approach is put forth by leveraging the multi-armed bandit (MAB) framework. Per time slot, by exploiting temporal information, the discrete offloading decisions are first obtained via the MAB method, and the analog resource allocation variables are subsequently optimized using the BO selection rule. Numerical tests validate the effectiveness of the proposed BO approach. 
    more » « less
  8. Crowdsourcing is the learning paradigm that aims to combine noisy labels provided by a crowd of human annotators. To facilitate this label fusion, most contemporary crowdsourcing methods assume conditional independence between different annotators. Nevertheless, in many cases this assumption may not hold. This work investigates the effects of groups of correlated annotators in multiclass crowdsourced classification. To deal with this setup, a novel approach is developed to identify groups of dependent annotators via second-order moments of annotator responses. This in turn, enables appropriate dependence aware aggregation of annotator responses. Preliminary tests on synthetic and real data showcase the potential of the proposed approach. 
    more » « less
  9. Massive datasets are typically distributed geographically across multiple sites, where scalability, data privacy and integrity, as well as bandwidth scarcity typically discourage uploading these data to a central server. This has propelled the so-called federated learning framework where multiple workers exchange information with a server to learn a “centralized” model using data locally generated and/or stored across workers. This learning framework necessitates workers to communicate iteratively with the server. Although appealing for its scalability, one needs to carefully address the various data distribution shifts across workers, which degrades the performance of the learnt model. In this context, the distributionally robust op-timization framework is considered here. The objective is to endow the trained model with robustness against adversarially manipulated input data, or, distributional uncertainties, such as mismatches between training and testing data distributions, or among datasets stored at different workers. To this aim, the data distribution is assumed unknown, and to land within a Wasserstein ball centered around the empirical data distribution. This robust learning task entails an infinite-dimensional optimization problem, which is challenging. Leveraging a strong duality result, a surrogate is obtained, for which a primal-dual algorithm is developed. Compared to classical methods, the proposed algorithm offers robustness with little computational overhead. Numerical tests using image datasets showcase the merits of the proposed algorithm under several existing adversarial attacks and distributional uncertainties. 
    more » « less