Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 10, 2025
-
Alistarh, Dan (Ed.)We provide a fast distributed algorithm for detecting h-cycles in the Congested Clique model, whose running time decreases as the number of h-cycles in the graph increases. In undirected graphs, constant-round algorithms are known for cycles of even length. Our algorithm greatly improves upon the state of the art for odd values of h. Moreover, our running time applies also to directed graphs, in which case the improvement is for all values of h. Further, our techniques allow us to obtain a triangle detection algorithm in the quantum variant of this model, which is faster than prior work. A key technical contribution we develop to obtain our fast cycle detection algorithm is a new algorithm for computing the product of many pairs of small matrices in parallel, which may be of independent interest.more » « less
-
Bringmann, Karl; Grohe, Martin; Puppis, Gabriele; Svensson, Ola (Ed.)We construct n-node graphs on which any O(n)-size spanner has additive error at least +Ω(n^{3/17}), improving on the previous best lower bound of Ω(n^{1/7}) [Bodwin-Hoppenworth FOCS '22]. Our construction completes the first two steps of a particular three-step research program, introduced in prior work and overviewed here, aimed at producing tight bounds for the problem by aligning aspects of the upper and lower bound constructions. More specifically, we develop techniques that enable the use of inner graphs in the lower bound framework whose technical properties are provably tight with the corresponding assumptions made in the upper bounds. As an additional application of our techniques, we improve the corresponding lower bound for O(n)-size additive emulators to +Ω(n^{1/14}).more » « less
-
Bringmann, Karl; Grohe, Martin; Puppis, Gabriele; Svensson, Ola (Ed.)We consider the problem of approximate counting of triangles and longer fixed length cycles in directed graphs. For triangles, Tětek [ICALP'22] gave an algorithm that returns a (1±ε)-approximation in Õ(n^ω/t^{ω-2}) time, where t is the unknown number of triangles in the given n node graph and ω < 2.372 is the matrix multiplication exponent. We obtain an improved algorithm whose running time is, within polylogarithmic factors the same as that for multiplying an n× n/t matrix by an n/t × n matrix. We then extend our framework to obtain the first nontrivial (1± ε)-approximation algorithms for the number of h-cycles in a graph, for any constant h ≥ 3. Our running time is Õ(MM(n,n/t^{1/(h-2)},n)), the time to multiply n × n/(t^{1/(h-2)}) by n/(t^{1/(h-2)) × n matrices. Finally, we show that under popular fine-grained hypotheses, this running time is optimal.more » « less
-
Bringmann, Karl; Grohe, Martin; Puppis, Gabriele; Svensson, Ola (Ed.)In the k-Disjoint Shortest Paths (k-DSP) problem, we are given a graph G (with positive edge weights) on n nodes and m edges with specified source vertices s_1, … , s_k, and target vertices t_1, … , t_k, and are tasked with determining if G contains vertex-disjoint (s_i,t_i)-shortest paths. For any constant k, it is known that k-DSP can be solved in polynomial time over undirected graphs and directed acyclic graphs (DAGs). However, the exact time complexity of k-DSP remains mysterious, with large gaps between the fastest known algorithms and best conditional lower bounds. In this paper, we obtain faster algorithms for important cases of k-DSP, and present better conditional lower bounds for k-DSP and its variants. Previous work solved 2-DSP over weighted undirected graphs in O(n⁷) time, and weighted DAGs in O(mn) time. For the main result of this paper, we present optimal linear time algorithms for solving 2-DSP on weighted undirected graphs and DAGs. Our linear time algorithms are algebraic however, and so only solve the detection rather than search version of 2-DSP (we show how to solve the search version in O(mn) time, which is faster than the previous best runtime in weighted undirected graphs, but only matches the previous best runtime for DAGs). We also obtain a faster algorithm for k-Edge Disjoint Shortest Paths (k-EDSP) in DAGs, the variant of k-DSP where one seeks edge-disjoint instead of vertex-disjoint paths between sources and their corresponding targets. Algorithms for k-EDSP on DAGs from previous work take Ω(m^k) time. We show that k-EDSP can be solved over DAGs in O(mn^{k-1}) time, matching the fastest known runtime for solving k-DSP over DAGs. Previous work established conditional lower bounds for solving k-DSP and its variants via reductions from detecting cliques in graphs. Prior work implied that k-Clique can be reduced to 2k-DSP in DAGs and undirected graphs with O((kn)²) nodes. We improve this reduction, by showing how to reduce from k-Clique to k-DSP in DAGs and undirected graphs with O((kn)²) nodes (halving the number of paths needed in the reduced instance). A variant of k-DSP is the k-Disjoint Paths (k-DP) problem, where the solution paths no longer need to be shortest paths. Previous work reduced from k-Clique to p-DP in DAGs with O(kn) nodes, for p = k + k(k-1)/2. We improve this by showing a reduction from k-Clique to p-DP, for p = k + ⌊k²/4⌋. Under the k-Clique Hypothesis from fine-grained complexity, our results establish better conditional lower bounds for k-DSP for all k ≥ 4, and better conditional lower bounds for p-DP for all p ≤ 4031. Notably, our work gives the first nontrivial conditional lower bounds 4-DP in DAGs and 4-DSP in undirected graphs and DAGs. Before our work, nontrivial conditional lower bounds were only known for k-DP and k-DSP on such graphs when k ≥ 6.more » « less